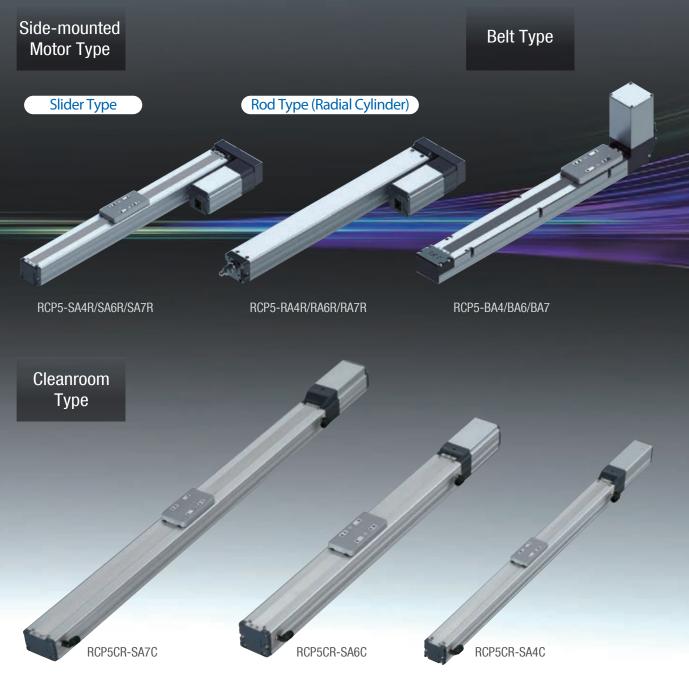


RoboCylinder Standard & Cleanroom Types with Battery-less Absolute Encoder RCP5/RCP5CR Series

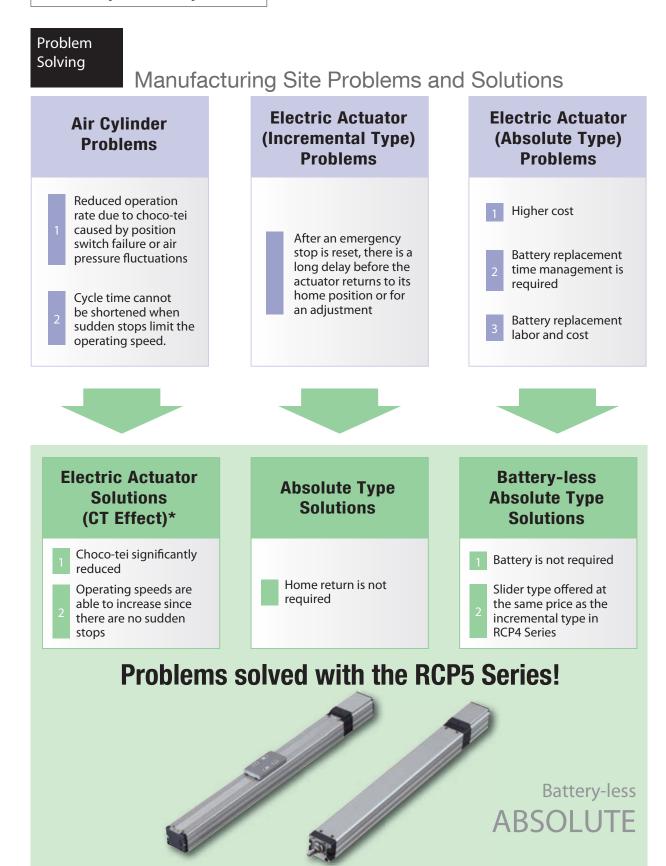
GB

www.robocylinder.de

Introducing the RCP5 Series, powered by a battery-less actuator, with the convenience of an absolute encoder and the cost and simplicity of an incremental encoder

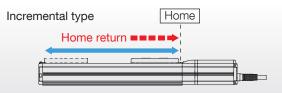

The innovative battery-less absolute encoder (patent pending) operates through a combination of gears to read the rotational position data. This eliminates the need for the battery that is normally required for a conventional absolute encoder. This means there is no longer a need for battery replacement, with the associated costs and adjustments.

Added to the Series: Side-mounted Motor and Belt Types


Compared to the existing model (RCP2-BA), the belt type is:

- Available with a maximum stroke of 2600mm
- Equipped with a standard stainless steel dust cover
- 1.5 times greater maximum speed and maximum payload

Merit_RCP5series


The RoboCylinder is Easy to Use!!!

* The "CT Effect" refers to the increase in production volume per unit of time, which enables "shorter cycle-times" and "reduced choco-tei", due to reevaluating the configuration of the automated equipment. Feature

The Battery-less Absolute Encoder

What is an absolute encoder?

Since position data is lost when the power is shut down, this type of encoder will not operate until it has established its home position.

Absolute type

This type of encoder will maintain its position data even when the power is shut off, and will resume operating from its current position when the power is switched on.

Advantages of an absolute encoder

Home return is not required, which means reduced amount of labor and time required for adjustment when starting up the device. The amount of time required for adjustment after an emergency stop until operation resumes is reduced.

What is a battery-less absolute encoder?

The battery-less absolute encoder verifies its current position based on the linked gear positions. A conventional absolute encoder uses a battery to store its current position, but since the battery-less type has no need to store this data, the battery was eliminated.

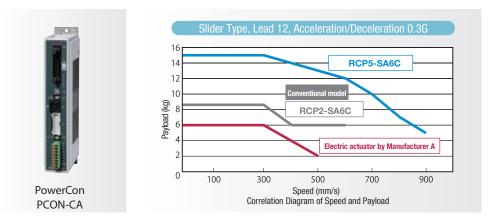
Advantages of a battery-less absolute encoder

Advantage 1:	More economical with no cost associated with battery replacement.
Advantage 2:	Battery replacement management is no longer required. Labor for replacement work is also no longer required.
Advantage 3:	Battery installation space is not required.
Advantage 4:	Even if the cable between the controller and the actuator is replaced, operation will resume with no adjustments needed, since positioning data is read each time it operates.
Advantage 5:	No external sensor, such as a sensor to check the origin, is required since home return is not necessary.
Advantage 6:	IAI's slider type, even with the battery-less absolute encoder, is offered for the same price as the conventional incremental type in RCP4 series.

Service life of a battery-less absolute encoder

The mechanical configuration of the battery-less absolute encoder offers a service life that is approximately four times the actuator guide's standard rating. Furthermore, it can be used with a sense of security because it will output an error when a certain amount of wear in the gear section is detected.

The RoboCylinder is Easy to Use!!!



1.5 Times Higher Maximum Speed and Double the Payload When Combined with a PowerCon

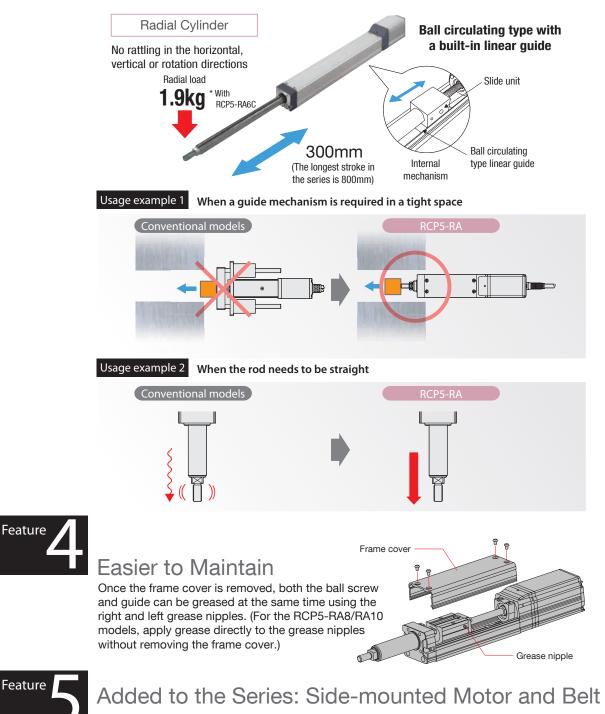
Shorter cycle time significantly boosts the productivity of your system

The new controller (PowerCon) is equipped with the newly developed high-output driver (patent pending) and has achieved significantly higher speeds up to 1.5 times more than IAI's conventional models. In addition, the payload is as much as two times greater, which are astonishing improvements in specifications (*). Furthermore the maximum speed does not drop as much even when the payload increases due to increased torque with the high speed motor, meaning that the dynamic performance equivalent to that of a higher-class model can be achieved at lower cost.

(*) The specific rates of improvement vary depending on the model.

Multi-axis type is now available with a PowerCon

Since the MSEP Controller uses the PowerCon specification, it has speeds up to 1.5 times higher and a payload of up to 2 times higher compared to the existing models, and can operate a maximum of four RCP5 axes at once. Also, if high-output capability is not used, maximum of eight axes is possible. In addition, the designated target location can be changed via the field network.


5

The Rod Type Can Carry Radial Loads.

The rod type <Radial Cylinder > with a built-in guide mechanism can carry radial loads over a long stroke of up to 800mm.

The rod type (Radial Cylinder) has a built-in ball circulating type linear guide mechanism, which allows it to carry radial loads and have a long stroke of up to 800mm. In addition, the actuator can support a radial load that is offset from the center of the rod.

Type In addition to the cleanroom type which is applicable for ISO Cleanliness Class 4, the side-mounted motor and belt types have been added in the series.

Variation _____RCP5_{series}

The RoboCylinder is Easy to Use!!!

Slider Ty	pe	→P. 1	5													
	-	F (1)	Actuator	Stroke	Ball screw lead	Maximum	Maximum p	ayload (kg)								
Model	Туре	External view	width	(mm)	(mm)	speed (mm/s)	Horizontal	Vertical	Page							
		~			~		16	1260	4	1						
	SA4C			50~500	10	785	10	2.25	→P. 15							
	JA4C			30~300	5	390	12	4.5	×r. 15							
		¥*	40 mm		2.5	195	12	9								
Straight		~			20	1440<1280>	10	1								
motor	SA6C			50~800	12	900	15	2.5	→P. 17							
specification	JAOC		لىت	50,~800	6	450	25	6	→r. 17							
specification			58 mm		3	225	25	16								
		A			24	1200	20	3								
	SA7C	2		50~800	16	980<840>	40	8	→P. 19							
	JAIC		73 mm		8	490	45	16	1.15							
				73 mm		4	245<210>	45	25							
		•	\sim	50~500	16	1260	4	1								
	SA4R				10	785	10	2.25	→P. 21							
	57111		10	40 mm	10	40	10	40	40	50 500	5	390	12	4.5	1.21	
		•	40 11111		2.5	195	12	9								
Side-					20	1280	10	1								
mounted	SA6R			50~800	12	900<800>	15	2.5	→P. 23							
motor					6	450	25	6								
specification		•	58 mm		3	225	25	12								
					24	1000	20	3	→P. 25							
	SA7R			50~800	16	840<700>	40	8								
			72	72	72	72	73 mm	72				8	490	45	16	
		V	7511111		4	210	45	25								

Values in brackets < > are for vertical use.

Rod Type

→P. 27

Model	Turne	External view	Actuator	Stroke	Ball screw lead	Maximum	Maximum p	ayload (kg)	Daga		
Model	Туре	External view	width	(mm)	(mm)	speed (mm/s)	Horizontal	Vertical	Page		
		~			16	1120<840>	6	1.5	→P. 27		
	RA4C	~	b.O.1	60~410	10	700	15	2.5			
	na+c		40 mm	00 110	5	350	28	5			
		~~	10 1111		2.5	175	40	10			
					20	800	6	1.5			
	RA6C		b.	65~415	12	700	25	4	→P. 29		
	in to c		50 mm	05 115	6	450	40	10	1.25		
		~	20 11111		3	225	60	20			
Straight		S	58 mm	70~520	24	800<600>	20	3			
motor	RA7C				16	700<560>	50	8	→P. 31		
specification				72 mm	72 mm		8	420	60	18	
		14			4	210	80	28			
					20	600<450>	30	5			
	RA8C			50~700	10	300<250>	60	40	→P. 33		
			88 mm		5	150	100	70			
					10	250<167>	80	80			
	RA10C			50~800	5	125	150	100	→P. 35		
		A	108 mm		2.5	63	300	150			

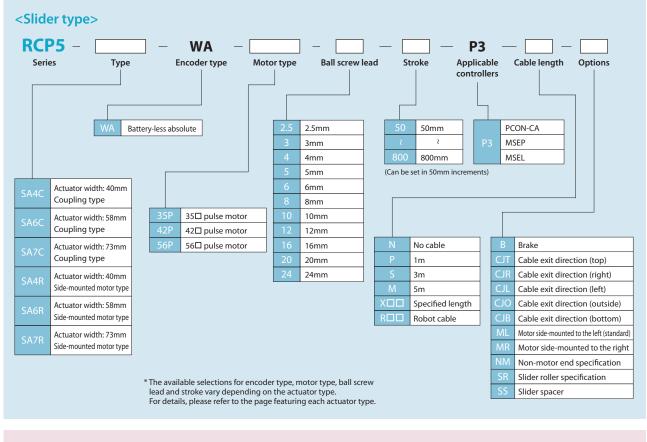
Values in brackets < > are for vertical use.

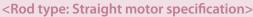
Rod Type →P. 37

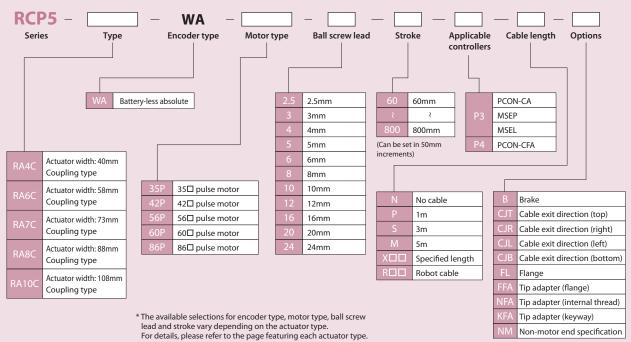
Model	Turne	External view	Actuator	Stroke	Ball screw lead	Maximum	Maximum p	ayload (kg)	Daga		
Model	Туре	External view	width	(mm)	(mm)	speed (mm/s)	Horizontal	Vertical	Page		
					16	840	5	1	→P. 37		
	RA4R		<u>l</u> O1	60~410	10	610	12	2.5			
	10,1-11,		40 mm	00 410	5	350	25	5	1.57		
			10 1111		2.5	175	40	10			
					20	800	6	1.5			
	RA6R		6.9.6	65~415	12	700	25	4	→P. 39		
	n/ tort		50	05 415	6	450	40	10	1.55		
		*	58 mm		3	225	60	20			
Side-				70~520	24	800<600>	20	3	→P. 41		
mounted motor	RA7R				16	560	50	8			
specification	10.011				72	72	10 520	8	420<350>	60	18
specification		AU.	73 mm		4	175	80	28			
					20	400	30	5			
	RA8R			50~700	10	200	60	40	→P. 43		
			88 mm		5	100	100	70			
			60 06		10	200<140>	80	80			
	RA10R			50~800	5	100	150	100	→P. 45		
		A	108 mm		2.5	50	300	150			

Values in brackets < > are for vertical use.

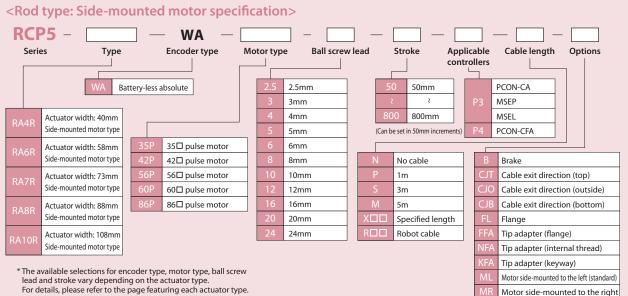
Cleanroom Type	→P. 4	7							
Туре	External view	Actuator width	Stroke (mm)	Ball screw lead (mm)	Maximum speed (mm/s)	Maximum p Horizontal		Page	
	R	40 mm		16 10	1260 785	4 10	1 2.25	\bigcirc	
SA4C	Contraction of the second seco		50~500 40 mm	5	390 195	12 12	4.5 9	→ P. 47	
	2	58 mm		20 12	1440<1280> 900	10 15	1 2.5	\frown	
SA6C					50~800	6 3	450 225	25 25	6 16
	1			24	1200	20	3	\frown	
SA7C	3	72 mm	50~800	16 8	980<840> 490	40 45	8 16	→P. 51	
		73 mm		4	245<210>	45	25		

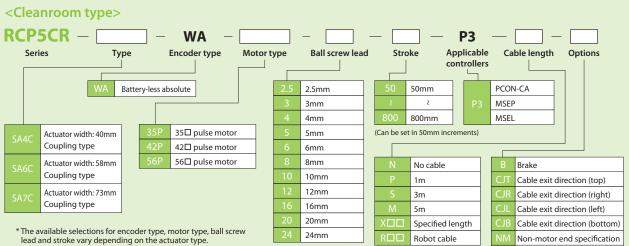

Values in brackets < > are for vertical use.


Belt Type	→P. 5	3					
Туре	External view	Actuator width	Stroke (mm)	Ball screw lead (mm)	Maximum speed (mm/s)	Maximum payload (kg) Horizontal	Page
BA4/BA4U	and the second s	40 mm	300~1200	Equivalent to 48	1200	1.5	→P. 53
BA6/BA6U	and the second second	58 mm	300~2200	Equivalent to 48	1500	6	→P. 55
BA7/BA7U	and the second	70 mm	300~2600	Equivalent to 48	1600	16	→P. 57

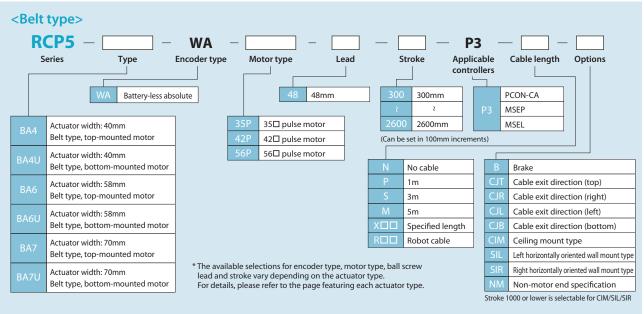

Model Specification Items __ RCP5 series

Model Specification Items


Model Specification Items



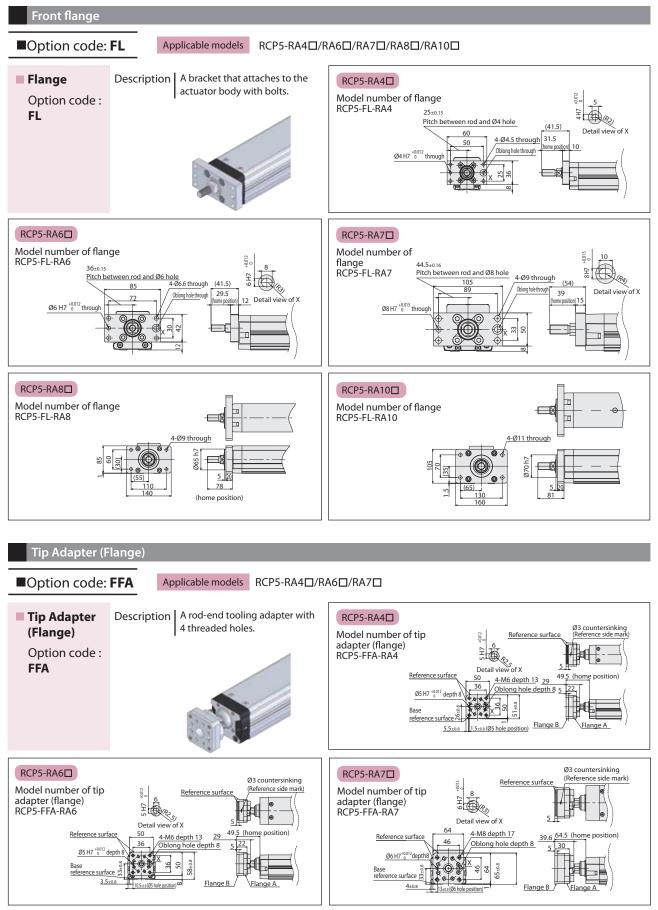
For details, please i



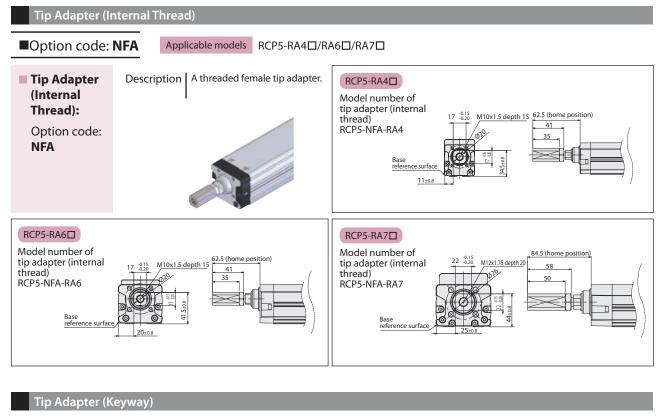
Non-motor end specification

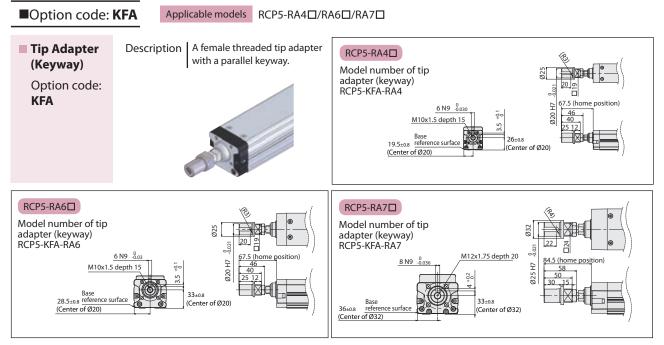
Vacuum joint on opposite side

For details, please refer to the page featuring each actuator type.



Actuator Options **___ RCP5** series


Options

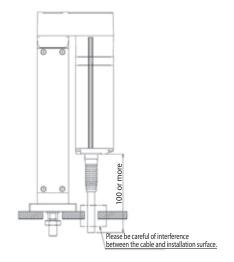

Act	uator Options
■Brake Option code: B	Applicable modelsAll modelsDescriptionThis is a holding mechanism that prevents the slider from falling and damaging any attached fittings when the power or servo is turned off.
Optional cable exit direction Option code: CJT CJR CJL CJB CJO	Applicable models All models Description This option allows you to change the exit direction of the motor-encoder cable to up, down, left or right. Motor coupled type Top (Option code: CIT) Left (Option code: CIT) Left (Option code: CIT) View from the rear of the actuator Bottom (Option code: CIB)
Side-mounted motor direction Option code: ML/MR * Please make sure to specify either "ML" or "MR" when ordering the side-mounted motor type.	Applicable models RCP5-SA R/RA R Description This allows you to specify the direction of the side-mounted motor. As viewed from the motor side of the actuator, ML represents left and MR represents right. The motor is side-mounted to the left (standard) The motor is side-mounted to the right Option code: ML Motor Motor Motor Motor Motor
Non-motor end specification Option code: NM	Applicable models All models Description This option changes the home position of the actuator's slider or rod from the normal position (motor-side), to the opposite side.
Slider spacer Option code: SS	Applicable models RCP5-SA7R Description This option changes the top of the slider position to be higher than the motor height.
Slider roller specification Option code: SR	Applicable models RCP5-SA4□/SA6□/SA7□ Description The slider of the standard slider type specification is changed to the same roller structure of the cleanroom type. When using the slider roller specification, the appearance and dimensions of the slider cover will be the same as the cleanroom type.
Vacuum joint on opposite side Option code: VR	Applicable models RCP5CR-SA4C/SA6C/SA7C Description The vacuum joint in the standard models are installed on the left side of the actuator as viewed from the motor side. This option changes the position to the right (opposite) side.

Rod Attachment Options

Rod Attachment Options

Warnings when Selecting the Rod Attachment Option

When Selecting the Front Flange (FL)


The front flange (FL) rod attachment option cannot be selected when the following strokes are selected for RCP5-RA4R/RA6R/RA7R;

(1) RA4R: 60mm (standard) and 60~110mm (with brake)

(2) RA6R: 65mm (with brake)

(3) RA7R: 70mm (standard) and 70~120mm (with brake)

Please be careful of nearby objects when selecting the front flange (FL) option for the RCP5-RA4R/RA6R/ RA7R models, as selecting a short stroke may cause some interference between the cable and installation surface for certain strokes.

When Selecting the Tip Adapter Option (FFA, NFA, KFA)

Please be careful of nearby objects when selecting the tip adapter option (FFA, NFA, KFA) for the RCP5-RA4R/RA6R/RA7R models, as selecting a short stroke may cause some interference between the cable and work piece for certain strokes.

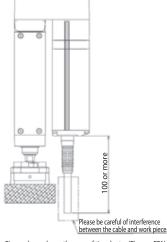
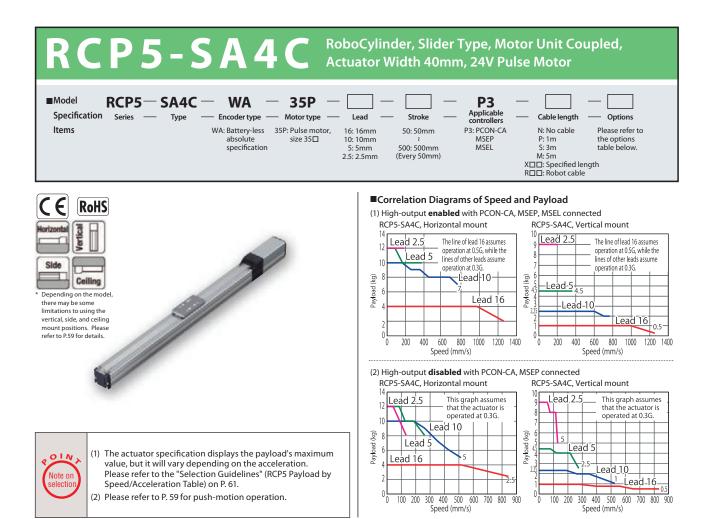



Figure above shows the case of tip adapter (Flange=FFA).

						Stroke a	and Maximum S	peed	
Lead (mm)	Connected controller			Stroke (mm)		Lead (mm)	Connected controller	50~400 (Every 50mm)	450 (mm)
16	High-output enabled		1			16	High-output enabled	1260	1060
10	High-output disabled					16	High-output disabled		840
10	High-output enabled		2.25				High-output enabled	785	675
10	High-output disabled		2.25	50~500		10	High-output disabled		525
_	High-output enabled			(Every 50mm)			High-output enabled	390	330
5	High-output disabled		4.5			5	High-output disabled		260
25	High-output enabled						High-output enabled	195	165
2.5	High-output disabled		9			2.5	High-output disabled		130
	(mm)	Controller (mm) controller 16 High-output enabled 10 High-output disabled 10 High-output disabled 5 High-output disabled 10, High-output disabled High-output disabled 2.5 High-output disabled	Controller Horizontal (kg) 16 High-output enabled High-output disabled 4 10 High-output disabled High-output disabled 10 5 High-output enabled High-output disabled 12 High-output disabled High-output disabled 12	Controller Horizontal (kg) Vertical (kg) 16 High-output enabled 4 1 10 High-output disabled 10 2.25 5 High-output disabled 12 4.5 2.5 High-output enabled 12 9	image controller Horizontalkgi Vertical kgi (mm) 16 High-output enabled High-output disabled 4 1 1 10 High-output disabled 10 2.25 50~500 5 High-output disabled 12 4.5 50~500 2.5 High-output disabled 12 9 50~500	Lead (mm) Connected controller Maximum payload Horizontalugi Stroke (mm) 16 High-output enabled High-output disabled 4 1 10 High-output enabled High-output disabled 10 2.25 5 High-output enabled High-output disabled 12 4.5 2.5 High-output enabled High-output disabled 12 9	Lead (nm) Connected controller Maximum payload Horizontaliugi Stroke (mm) 16 High-output enabled High-output disabled 4 1 16 10 High-output enabled High-output disabled 4 1 16 10 High-output disabled High-output disabled 10 2.25 50~500 (Every 50mm) 10 5 High-output disabled 12 4.5 5	Lead (nm) Connected controller Maximum payload Horizontalug Stroke (mm) 16 High-output enabled High-output disabled 4 1 10 High-output enabled High-output disabled 4 1 10 High-output disabled High-output disabled 10 2.25 5 High-output enabled High-output disabled 12 4.5 2.5 High-output enabled High-output disabled 12 9	Image: controller Horizontaliug Verticaliug (mm) (mm) (mm) (mm) (Every 50mm) 16 High-output enabled High-output disabled 4 1 High-output enabled 1260 10 High-output disabled 10 2.25 50~500 High-output enabled 785 High-output enabled High-output disabled 12 4.5 50~500 10 High-output disabled 785 2.5 High-output enabled High-output disabled 12 9 6 6 10 10 10 2.5 High-output enabled High-output enabled 12 9 9 10 10 10 10 10

Legend: ① Stroke ② Cable length ③ Options

Cable Length	1
Туре	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
1	R16 (16m)~R20 (20m)

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Slider roller specification	SR	→P. 11
Non-motor end specification	NM	→P. 11

 High-output disabled
 130

 Actuator Specifications
 Description

 Drive system
 Ball screw Ø8mm, rolled C10

 Positioning repeatability
 ±0.02mm

 Lost motion
 0.1mm or less

 Base
 Material: Aluminum with white alumite treatment

 Dynamic allowable moment
 Ma: 4.98N-m, Mb: 7.11N-m, Mc: 9.68N-m

 Static allowable moment
 Ma: 8.65N-m, Mb: 12.2N-m, Mc; 16.7N-m

 Anbient operating temperature, humidity
 0 to 40°C, 85% RH or less (Non-condensing)

(*1) Assumes a standard rated life of 5000km.

Reference for overhang load lengths / Ma: 120mm or less, Mb, Mc: 120mm or less

Allowable load moment directions Overhang load lengths

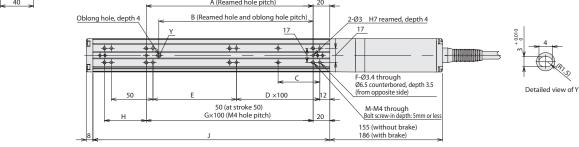
()

(Note)

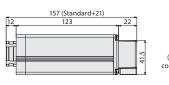
()

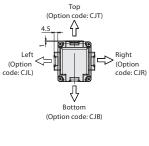
The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

6.4


(Unit: mm/s) 500 (mm) 875

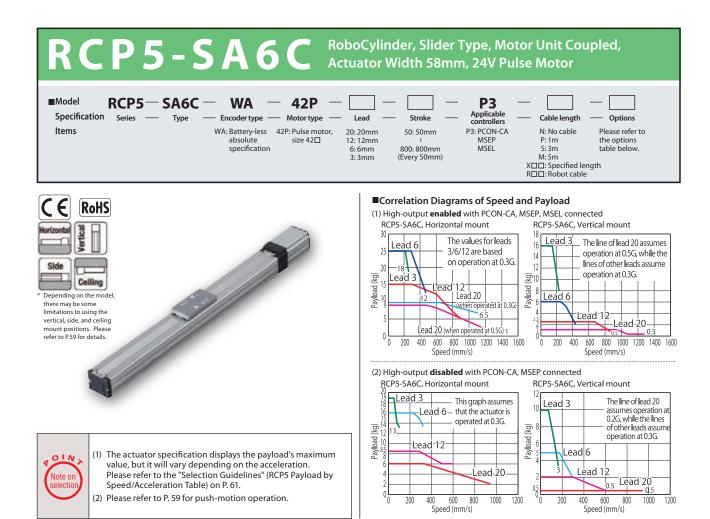
555


275


135

Dimensions CAD drawings can be www.robocylinder.de *1 When the slider is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME. 2/3D CAD ME: Mechanical end SE: Stroke end 2-Ø3 H7 reamed, depth 6 *2 Please see P. 48 for slider roller specification (SR). , Work part installed on the slider Pay attention to interference. 40 4-M3 depth 7 32 Ø6.5 Must be 100 or more 24 ±0.02 20 (Ø3H7 interval:±0.02) Ø3.4 25 3.5 6.3 5. Reference surface ŝ (56 Detailed view of X 124 (without brake) 155 (with brake) Stroke 76 35 3 _3 Range of 56 or more Pay M.E Home attention to interference (*1) M.E. ∖S.E. 15 (5) 48 o face of slider Ξ 7 Reference offset position for allowable moment calculation \bigcirc ۲ $\langle \rangle$ P 5 2 2 8.5 M3 depth 4 (Same on opposite side) (For ground line) 26.5 39 40 A (Reamed hole pitch) 20

Cable Exit Direction (Option)



Dimensions and Mass by Stroke

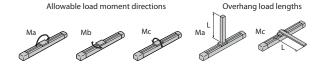
	lensions			,,							
	Stroke	50	100	150	200	250	300	350	400	450	500
	Without brake	297	347	397	447	497	547	597	647	697	747
L L	With brake	328	378	428	478	528	578	628	678	728	778
	А	50	100	100	200	200	300	300	400	400	500
	В	35	85	85	185	185	285	285	385	385	485
	С	25	50	50	50	50	50	50	50	50	50
	D	0	0	1	1	2	2	3	3	4	4
	E	50	100	50	100	50	100	50	100	50	100
	F	8	8	10	10	12	12	14	14	16	16
	G	0	1	1	2	2	3	3	4	4	5
	Н	50	50	100	50	100	50	100	50	100	50
	J	134	184	234	284	334	384	434	484	534	584
	К	173	223	273	323	373	423	473	523	573	623
	М	6	6	6	8	8	10	10	12	12	14
Mass	Without brake	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.7	1.8
(kg)	With brake	1.2	1.3	1.4	1.5	1.5	1.6	1.7	1.8	1.9	2.0

Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	- M	PCON-CA-35PWAI-①-2-0		512 mainte		
Pulse train type (High-output specification)		PCON-CA-35PWAI-PL-2-0	1	512 points		→P. 69
Field network type (High-output specification)		PCON-CA-35PWAI-@-0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	ur	MSEP	C: 8 (4 when high-output enabled)	3 points] [.0.77
Positioner multi-axis type (Field network specification)	iiii	MSEP	LC: 6 (3 when high-output enabled)	256 points	1	→P. 77
Program control multi-axis safety category type		MSEL-PG-1-35PWAI-①-2-4	4	20000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	-	MSEL-PG-1-35PWAI0-4	4	30000 points	100V~230V	→r. o/

49

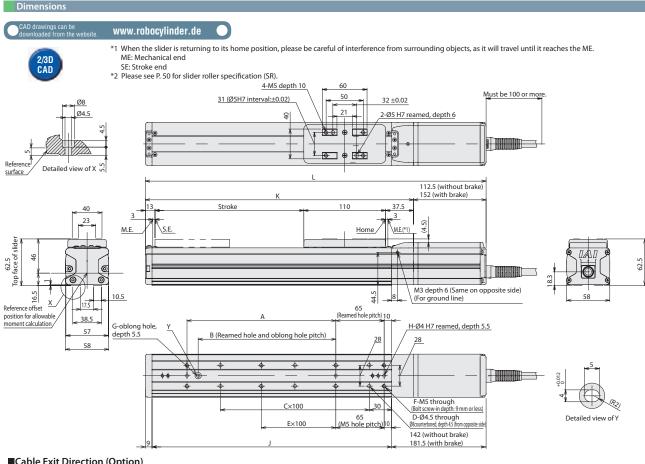
Actuator Specifications																	
Lead and Payload Stroke and Maximum Speed Values in brackets <> are for vertical use. (Unit: mm/								: mm/s									
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Stroke (mm)		Lead (mm)	Connected controller	50~400 (Every 50mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)		
RCP5-SA6C-WA-42P-20-①-P3-②-③	20	High-output enabled	10	1			20	High-output enabled	1,44 <128	10 0>	1,335 <1280>	1130	970	840	735	650	575
RCP3-SA6C-WA-42P-20-12-P3-12-12	20	High-output disabled	6	0.5				High-output disabled	960					840	735	650	575
RCP5-SA6C-WA-42P-12-①-P3-②-③	12	High-output enabled	15	2.5	50~800		12	High-output enabled	900	885	735	620	535	460	405	355	315
NCF3-3A0C-WA-42F-12-W-F3-W-B	12	High-output disabled	8.5	2				High-output disabled		600)		535	460	405	355	315
RCP5-SA6C-WA-42P-6-①-P3-②-③	6	High-output enabled	n-output enabled 25 6 (Every 50mm)	(Every 50mm)		6	High-output enabled	450	435	365	305	265	230	200	175	155	
RCP3-3A0C-WA-42P-0-W-P3-&-&	0	High-output disabled	16	5		6		High-output disabled		300)		265	230	200	175	155
RCP5-SA6C-WA-42P-3-①-P3-②-③	3	High-output enabled	25	12			3	High-output enabled	225	215	180	150	130	115	100	85	75
ncr3-3A0C-WA-42P-3-0-P3-0-03	3	High-output disabled	19	10				High-output disabled		150			130	115	100	85	75
Legend: ① Stroke ② Cable length ③ Options																	

Cable Length	١
Туре	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
	R16 (16m)~R20 (20m)


Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Slider roller specification	SR	→P. 11
Non-motor end specification	NM	→P. 11

Actuator Specifications	
ltem	[
Drive system	Roll corour (10mm

Description
Ball screw Ø10mm, rolled C10
±0.02mm [±0.03mm]
0.1mm or less
Material: Aluminum with white alumite treatment
Ma: 11.6N•m, Mb: 16.6N•m, Mc: 24.6N•m
Ma: 38.3N•m, Mb: 54.7N•m, Mc: 81N•m
0 to 40°C, 85% RH or less (Non-condensing)


(*1) The values in brackets [] are for Lead 20.

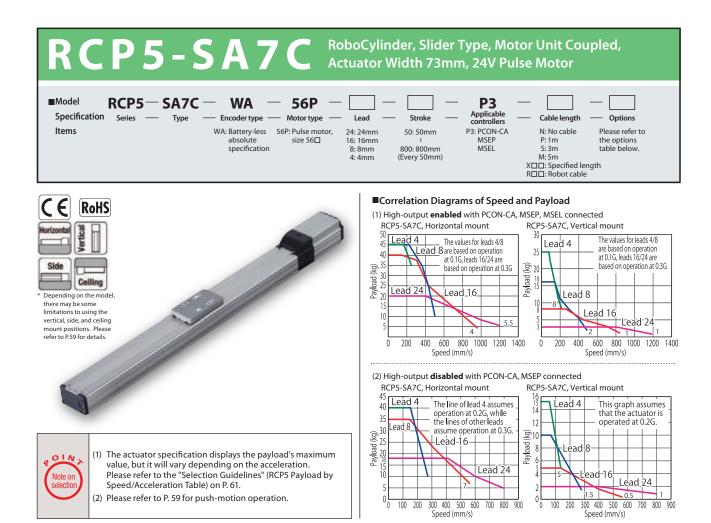
(*2) Assumes a standard rated life of 5000km.
Reference for overhang load lengths / Ma: 150mm or less, Mb, Mc: 150mm or less



(Note)

The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

Cable Exit Direction (Option)



(Option code: CJT) 4.4 4.75 <u>[</u>] Left Right (Option code: CJL) (Option code: CJR) Ϋ Bottom (Option code: CJB) Dimensions and Mass by Stroke

	nensions	unui	nuss c	<i>y</i> 500	///C												
	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	Without brake	323	373	423	473	523	573	623	673	723	773	823	873	923	973	1023	1073
L	With brake	362.5	412.5	462.5	512.5	562.5	612.5	662.5	712.5	762.5	812.5	862.5	912.5	962.5	1012.5	1062.5	1112.5
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	В	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	С	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	F	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	J	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
	К	210.5	260.5	310.5	360.5	410.5	460.5	510.5	560.5	610.5	660.5	710.5	760.5	810.5	860.5	910.5	960.5
Mass	Without brake	1.7	1.8	2.0	2.2	2.4	2.5	2.7	2.9	3.1	3.2	3.4	3.6	3.8	3.9	4.1	4.3
(kg)	With brake	1.9	2.0	2.2	2.4	2.6	2.7	2.9	3.1	3.3	3.4	3.6	3.8	4.0	4.1	4.3	4.5

The RCP5 series actuators can be operated by the controllers indicated below. Please select the type depending on your intended use.								
Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power		Reference page	
Positioner type (High-output specification)	μî)	PCON-CA-42PWAI-①-2-0		512 mainte				
Pulse train type (High-output specification)		PCON-CA-42PWAI-PL®-2-0	1	512 points			→P. 69	
Field network type (High-output specification)		PCON-CA-42PWAI0-0		768 points	DC24V			
Solenoid valve multi-axis type (PIO specification)		MSEP	C: 8 (4 when high-output enabled)	3 points] [ND 77	
Positioner multi-axis type (Field network specification)	HI	MSEP	LC: 6 (3 when high-output enabled)	256 points			→P. 77	
Program control multi-axis safety category type		MSEL-PG-1-42PWAI-①-2-4	4	20000 points	Single-phase AC			
Program control multi-axis safety category type (w/ network board)		MSEL-PG-1-42PWAI0-4	4	30000 points	AC 100V~230V		→P. 87	

*The high output enabled operation is only available when the "High-output setting specs" is selected in the MSEP-C/LC.

Actuator Specifications												
■Lead and Payload						■St	roke	e and Maximum S	peed Val	ues in brack	ets < > are	
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Stroke (mm)	Le (m		Connected controller	50~550 (Every 50mm)	600 (mm)	650 (mm)	
RCP5-SA7C-WA-56P-24-①-P3-②-③	24	High-output enabled	20	3				High-output enabled	12	00	1145	
NCF3-3A7C-WA-30F-24-W-F3-W-D	27	High-output disabled	18	2		2	24	High-output disabled			800	
RCP5-SA7C-WA-56P-16-①-P3-②-③	16	High-output enabled	40	8				High-output enabled	980 <840>	875 <840>	755	
		High-output disabled	35	5	50~800 (Every 50mm)	16	6	High-output disabled		(040)	560	
RCP5-SA7C-WA-56P-8-①-P3-②-③	8	High-output enabled	45	16		-	_	High-output enabled	490	430	375	
		High-output disabled	40	10		8	3			450		
	4	High-output enabled	45	25				High-output disabled	ļ		280	
RCP5-SA7C-WA-56P-4-①-P3-②-③		High-output disabled	40	15				High-output enabled	245 <210>	215 <210>	185	
								High-output disabled			140	

Legend: ① Stroke ② Cable length ③

Cable Length	
Туре	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
	R16 (16m)~R20 (20m)

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P.11
Cable exit direction (Bottom)	CJB	→P.11
Slider roller specification	SR	→P.11
Non-motor end specification	NM	→P. 11

Actuator Specifications

ltem	Description
Drive system	Ball screw Ø12mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*2)	Ma: 11.6N•m, Mb: 16.6N•m, Mc: 33.7N•m
Static allowable moment	Ma: 51.2N•m, Mb: 73.1N•m, Mc: 148N•m
Ambient operating temperature, humidity	0 to 40°C 85% BH or less (Non-condensing)

> are for vertical use. (Unit: mm/s)

700 750 800 (mm) (mm) (mm)

1000 885 785

660 585 520 520

325 290 255

160 140 125

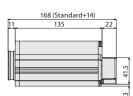
(*1) The values in brackets [] are for Lead 24.

(*2) Assumes a standard rated life of 5000km.
Reference for overhang load lengths / Ma: 230mm or less, Mb, Mc: 230mm or less

Reference for overhang load refiguris / Ivia: 250fffff of less, MD, Ivic: 250MM of less

Allowable load moment directions Overhang load lengths Ma Mc Ma Mb Ő. (F S)

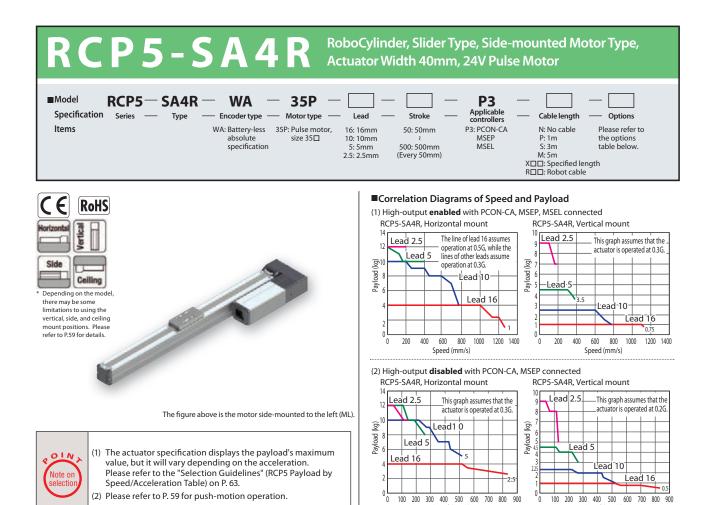
The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.


⁽Note)

Dimensions CAD drawings can be downloaded from the www.robocylinder.de *1 When the slider is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME. 2/3D CAD ME: Mechanical end SE: Stroke end *2 Please see P. 52 for slider roller specification (SR). 60 50 32 ±0.02 4-M5 depth 10 2-Ø5 H7 depth 10 Work part installed on the slider Pay attention to interference. 39 (Ø5H7 interval:±0.02) Ø9.5 __Must be 100 or more. Ø6 20 48 5.5 ाक के कि क V. (72) Reference 5.5 Detailed view of X 143 (without brake) 193 (with brake) surface К 110 Stroke 56 3 . 3 Range of 72 or more Pay 48 M.E. <u>S.E.</u> M.E. (*1 Home attention to interferen 30 (5) 3 E 64 face of slider 0/A\() 46.5 \odot Top M3 depth 6 (Same on opposite side) 13.5 28.5 . 3 (For ground line) Reference X offset position for allowable moment calculation X 26.5 60 (Reamed hole pitch) 30 53.5 G-oblong hole, Y 72 B_(Reamed hole and oblong hole pitch H-Ø4 H7 reamed, depth 6 depth 6 73 40 40 r⊕∕∙ 660 X \$ Detailed view of Y F-M5 depth 9 C×100 45 D-Ø6 through Ø9.5 counterbored, depth 5.5 (from opposite side) 195 (without brake) 245 (with brake) 60 (M5 hole pitch) E×100

(Option code: CJL)

Cable Exit Direction (Option)



	Top (Option cod	e: CJT)	
Left ption e: CJL)			Right (Option code: CJR)
	Bottom		
	Dotton		

(Option code: CJB) Dimensions and Mass by Stroke

				-													
	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	Without brake	372	422	472	522	572	622	672	722	772	822	872	922	972	1,022	1,072	1,122
L L	With brake	422	472	522	572	622	672	722	772	822	872	922	972	1,022	1,072	1,122	1,172
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	В	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	С	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	F	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	J	168	218	268	318	368	418	468	518	568	618	668	718	768	818	868	918
	К	229	279	329	379	429	479	529	579	629	679	729	779	829	879	929	979
Mass	Without brake	3.0	3.2	3.5	3.7	3.9	4.1	4.4	4.6	4.8	5.0	5.3	5.5	5.7	5.9	6.1	6.4
(kg)	With brake	3.5	3.7	4.0	4.2	4.4	4.6	4.9	5.1	5.3	5.5	5.8	6.0	6.2	6.4	6.6	6.9

	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power		Reference page
Positioner type (High-output specification)	- M	PCON-CA-56PWAI-①-2-0		512 points			
Pulse train type (High-output specification)		PCON-CA-56PWAI-PL®-2-0	1	512 points			→P. 69
Field network type (High-output specification)		PCON-CA-56PWAI0-0		768 points	DC24V		
Solenoid valve multi-axis type (PIO specification)	un	MSEP	C: 8 (4 when high-output enabled)	3 points			
Positioner multi-axis type (Field network specification)	iiii	MSEP	LC: 6 (3 when high-output enabled)	256 points			→P. 77
Program control multi-axis safety category type	1	MSEL-PG-1-56PWAI-①-2-4	4	30000 points	Single-phase AC		→P. 87
Program control multi-axis safety category type (w/ network board)	2	MSEL-PG-1-56PWAI0-4	4	Soudo points	AC 100V~230V		→r. o/

Actuator Specifications							Stroke a	and Maximum S	speed
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Stroke (mm)		Lead (mm)	Connected controller	50~40 (Every 50m
	16	High-output enabled		1		1		High-output enabled	1260
CP5-SA4R-WA-35P-16-①-P3-②-③	16	High-output disabled	4	· ·			16	High-output disabled	
	10	High-output enabled	10	2.25	1			High-output enabled	785
RCP5-SA4R-WA-35P-10-①-P3-②-③	10	High-output disabled		2.25	50~500	10	10	High-output disabled	
RCP5-SA4R-WA-35P-5-①-P3-②-③	-	High-output enabled	12	4.5	(Every 50mm)		5	High-output enabled	390
RCP5-SA4R-WA-35P-5-U-P3-Q-3	5	High-output disabled		4.5			5	High-output disabled	
RCP5-SA4R-WA-35P-2.5-①-P3-②-③	2.5	High-output enabled	12	9			25	High-output enabled	195
KCP3-3A4R-WA-33P-2.3-U-P3-U-U	2.5	High-output disabled	. –	9			2.5	High-output disabled	

Legend: 1 Stroke 2 Cable length 3 Options

Cable Length							
Туре	Cable code						
	P (1m)						
Standard type	S (3m)						
	M (5m)						
	X06 (6m) ~X10 (10m)						
Special length	X11 (11m)~X15 (15m)						
	X16 (16m)~X20 (20m)						
	R01 (1m) ~R03 (3m)						
	R04 (4m) ~R05 (5m)						
Robot cable	R06 (6m) ~R10 (10m)						
	R11 (11m)~R15 (15m)						
	R16 (16m)~R20 (20m)						

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Outside)	CJO	→P.11
Cable exit direction (Bottom)	CJB	→P. 11
Motor side-mounted to the left (Standard)	ML	→P.11
Motor side-mounted to the right	MR	→P.11
Slider roller specification	SR	→P. 11
Non-motor end specification	NM	→P. 11

	2.5	High-output enabled	195	165	135				
	2.5	High-output disabled		130					
Actuator Specificati	ions								
ltem		Description							
Drive system		Ball screw Ø8mm, r							
Drive system Positioning repeatability									
		Ball screw Ø8mm, r							
Positioning repeatability		Ball screw Ø8mm, r ±0.02mm	olled C10	alumite tr	eatment				
Positioning repeatability Lost motion	ent (*1)	Ball screw Ø8mm, r ±0.02mm 0.1mm or less	olled C10		eatment				
Positioning repeatability Lost motion Base	ent (*1)	Ball screw Ø8mm, r ±0.02mm 0.1mm or less Material: Aluminum	olled C10 with white 11N•m, Mc: 9	9.68N•m	eatment				

Speed (mm/s)

(Unit: mm/s)

500 (mm)

875

555

275

450 (mm

1060

675

330

840

525

260

Overhang load lengths

(*1) Assumes a standard rated life of 5000km.

Reference for overhang load lengths / Ma: 120mm or less, Mb, Mc: 120mm or less

Allowable load moment directions

Speed (mm/s)

Ma Mb Å () (A

(Note)

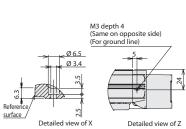
The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

Dimensions

www.robocylinder.de

48 Top face of slider 36

12


CAD drawings can be downloaded from the

*1 When the slider is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME. ME: Mechanical end

Κ

Stroke

SE: Stroke end *2 Please see P. 48 for slider roller specification (SR).

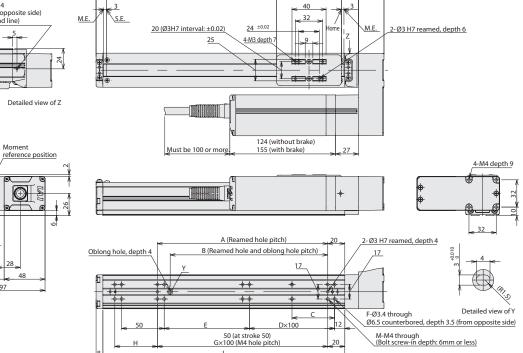
25

16

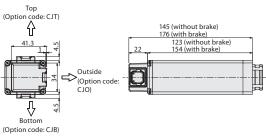
28

97

48


ò 9

26.5


39 40

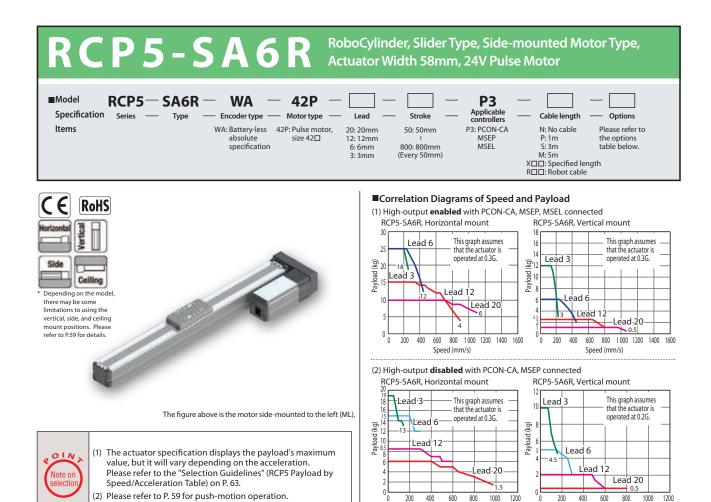
(9)

15

Cable Exit Direction (Option)

*The figure above is for the motor side-mounted to the left (ML).

Dimensions and Mass by Stroke


Stroke 50 100 150 200 250 300 350 400 450 450 L 188 238 288 338 388 438 488 538 588 6 A 50 100 100 200 200 300 300 400	Churchen	
A 50 100 100 200 200 300 300 400	Stroke	
B 35 85 85 185 185 285 285 385 385 - C 25 50 5	L	
C 25 50 </th <th>A</th>	A	
D 0 0 1 1 2 2 3 3 4 E 50 100	В	
E 50 100 50 100 50 100 50 100 50 F 8 8 10 10 12 12 14 14 16	D E	
F 8 8 10 10 12 12 14 14 16		
G - 1 1 2 2 3 3 4 4		
H 50 50 100 50 100 50 100 50 100 100	Н	
J 134 184 234 284 334 384 434 484 534	J	
K 158 208 258 308 358 408 458 508 558	К	
M 6 6 6 8 8 10 10 12 12	М	
Mass Without brake 1.3 1.4 1.5 1.6 1.6 1.7 1.8 1.9 2.0	ss Without brake	
(kg) With brake 1.5 1.6 1.7 1.8 1.8 1.9 2.0 2.1 2.2	g) With brake	

. 30 🛴

20

76

Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	Ξ.	PCON-CA-35PWAI-①-2-0		512 a sinta		
Pulse train type (High-output specification)		PCON-CA-35PWAI-PL [®] -2-0	1	512 points		→P. 69
Field network type (High-output specification)		PCON-CA-35PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	line l	MSEP	C: 8 (4 when high-output enabled)	3 points		→P. 77
Positioner multi-axis type (Field network specification)	111	MSEP	LC: 6 (3 when high-output enabled)	256 points		⇒P. //
Program control multi-axis safety category type		MSEL-PG-1-35PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	-	MSEL-PG-1-35PWAI0-4	4	Source points	100V~230V	⊐r. o/

						-	peeu (mm/s)					speeu	(1111)/ 3	"		
Actuator Specifications																
Lead and Payload						Stro	oke and Maxir	num Spe	ed Val	ues in br	ackets <	: > are fo	or vertic	cal use.	(Unit	c I
Model number	Lead (mm)	Connected controller		n payload Vertical (kg)	Stroke (mm)	Lead (mm		50~400 (Every 50mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)		700 (mm)		
RCP5-SA6R-WA-42P-20-①-P3-②-③	20	High-output enabled	10	1			High-output enable	d	1280		1130	970	840	735	650	
	20	High-output disabled	6	0.5		20	High-output disable	d	9	960			840	735	650	ĺ
RCP5-SA6R-WA-42P-12-①-P3-②-③	10	High-output enabled	15	2.5		12	High-output enable	d 900 <800>	885 <800>	735	620	535	460	405	355	
KCP5-SA6K-WA-42P-12-12-12-12-12-13	12	High-output disabled	8.5	2		High-output disable	i 600			535	460	405	355			
	6	High-output enabled	25	6	(Every 50mm)	6	High-output enable	d 450	435	365	305	265	230	200	175	
RCP5-SA6R-WA-42P-6-①-P3-②-③	0	High-output disabled	16	5		6	High-output disable	d	300			265	230	200	175	
RCP5-SA6R-WA-42P-3-①-P3-②-③	3	High-output enabled	25	12	3	High-output enable	d 225	215	180	150	130	115	100	85		
1CP3-3A0R-WA-42P-3-10-P3-12-13	3	High-output disabled	19	10			High-output disable	d	150			130	115	100	85	

Legend: 1 Stroke 2 Cable length 3 Options

Cable Length						
Туре	Cable code					
	P (1m)					
Standard type	S (3m)					
	M (5m)					
	X06 (6m) ~X10 (10m)					
Special length	X11 (11m)~X15 (15m)					
	X16 (16m)~X20 (20m)					
	R01 (1m) ~R03 (3m)					
	R04 (4m) ~R05 (5m)					
Robot cable	R06 (6m) ~R10 (10m)					
	R11 (11m)~R15 (15m)					
	R16 (16m)~R20 (20m)					

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Outside)	CIO	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Motor side-mounted to the left (Standard)	ML	→P.11
Motor side-mounted to the right	MR	→P.11
Slider roller specification	SR	→P. 11
Non-motor end specification	NM	→P. 11

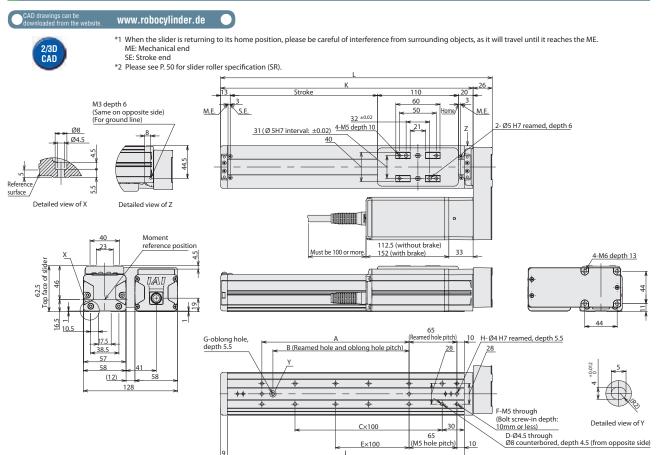
Actuator Specifications

ltem	Description
Drive system	Ball screw Ø10mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*2)	Ma: 11.6N•m, Mb: 16.6N•m, Mc: 24.6N•m
Static allowable moment	Ma: 38.3N•m, Mb: 54.7N•m, Mc: 81N•m
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

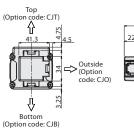
Sneed (mm/s)

(*1) The values in brackets [] are for Lead 20.

Sneed (mm/s)


(*2) Assumes a standard rated life of 5000km.
Reference for overhang load lengths / Ma: 150mm or less, Mb, Mc: 150mm or less

Allowable load moment directions Overhang load lengths Ma Mc Ма Mb (F Ĩ

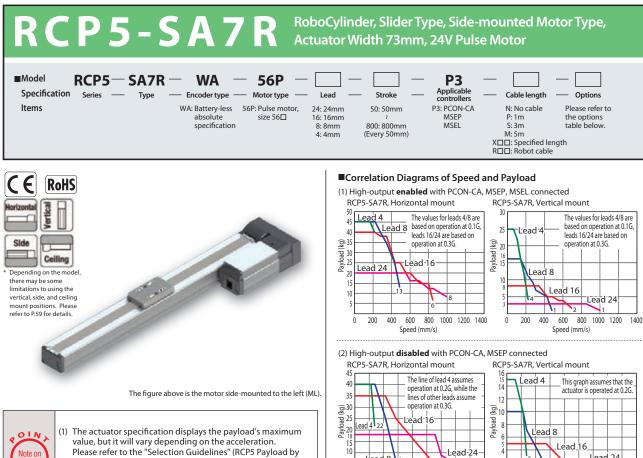

(Note)

The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

Dimensions

Cable Exit Direction (Option)

*The figure above is for the motor side-mounted to the left (ML).


	133 (without brake) 172 (with brake)	_
22	111 (without brake) 150 (with brake)]
]		

Dimensions and Mass by Stroke

S	stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	L	219	269	319	369	419	469	519	569	619	669	719	769	819	869	919	969
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	В	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	С	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	F	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	J	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
	К	193	243	293	343	393	443	493	543	593	643	693	743	793	843	893	943
Mass	Without brake	2.1	2.2	2.4	2.6	2.8	2.9	3.1	3.3	3.5	3.6	3.8	4.0	4.2	4.3	4.5	4.7
(kg)	With brake	2.3	2.4	2.6	2.8	3.0	3.1	3.3	3.5	3.7	3.8	4.0	4.2	4.4	4.5	4.7	4.9
	Without brake	193 2.1	243 2.2	293 2.4	343 2.6	393 2.8	443 2.9	493 3.1	543 3.3	593 3.5	643 3.6	693 3.8	743 4.0	793 4.2	843 4.3	893 4.5	9

The RCP5 series actuators can be operated by the controllers indicated l		i	·				
Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power		Reference page
Positioner type (High-output specification)	Ű.	PCON-CA-42PWAI-①-2-0		E12 points			
Pulse train type (High-output specification)		PCON-CA-42PWAI-PL-2-0	1	512 points		→P. 6	→P. 69
Field network type (High-output specification)		PCON-CA-42PWAI0-0		768 points	DC24V		
Solenoid valve multi-axis type (PIO specification)	m	MSEP	C: 8 (4 when high-output enabled)	3 points			→P. 77
Positioner multi-axis type (Field network specification)	iiii .	MSEP	LC: 6 (3 when high-output enabled)	256 points		-7P. 77	→P.77
Program control multi-axis safety category type	1	MSEL-PG-1-42PWAI-①-2-4	- 4	30000 points	Single-phase AC 100V~230V		→P. 87
Program control multi-axis safety category type (w/ network board)	: ·	MSEL-PG-1-42PWAI0-4					→P.87

RCP5-SAGR 24

Please refer to the "Selection Guidelines" (RCP5 Payload by Speed/Acceleration Table) on P. 63. (2) Please refer to P. 59 for push-motion operation.

Lead

(mm)

24

16

8

4

Connected

controller

High-output enabled

ligh-output disabled

High-output enabled

High-output disabled

High-output enabled

High-output disabled

High-output enabled

High-output disabled

Maximum payload

lorizontal (kg) Vertical (kg

3

2

8

5

16

10

25

15

20

18

40

35

45

40

45

40

1.5 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900 Ό Speed (mm/s) Speed (mm/s) Stroke and Maximum Speed Values in brackets <> are for vertical use. (Unit: mm/s) Connected 650 (mm) Stroke 50~550 600 700 800 Lead 750 (mm) controller (mm) (mm (mm) High-output enabled 1000 885 785 24 800 785 High-output disabled :600> 600: 840 <700> 755 <700> 660 585 High-output enabled 520 16 50~800 High-output disabled 560 520 Every 50mm High-output enabled 490 430 375 325 290 255 8 High-output disabled 280 255 High-output enabled 185 125 210 160 140 High-output disabled 140 125

Lead 24

Legend: ① Stroke ② Cable length ③

Actuator Specifications ■Lead and Payload

Model number

RCP5-SA7R-WA-56P-24-①-P3-②-③

RCP5-SA7R-WA-56P-16-①-P3-②-③

RCP5-SA7R-WA-56P-8-①-P3-②-③

RCP5-SA7R-WA-56P-4-①-P3-②-③

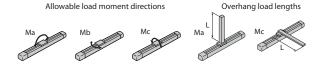
Cable Length					
Туре	Cable code				
	P (1m)				
Standard type	S (3m)				
	M (5m)				
	X06 (6m) ~X10 (10m)				
Special length	X11 (11m)~X15 (15m)				
	X16 (16m)~X20 (20m)				
	R01 (1m) ~R03 (3m)				
	R04 (4m) ~R05 (5m)				
Robot cable	R06 (6m) ~R10 (10m)				
	R11 (11m)~R15 (15m)				
	R16 (16m)~R20 (20m)				

Options

Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Outside)	CIO	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Motor side-mounted to the left (Standard)	ML	→P.11
Motor side-mounted to the right	MR	→P. 11
Slider roller specification	SR	→P.11
Slider spacer	SS	→P. 11
Non-motor end specification	NM	→P. 11

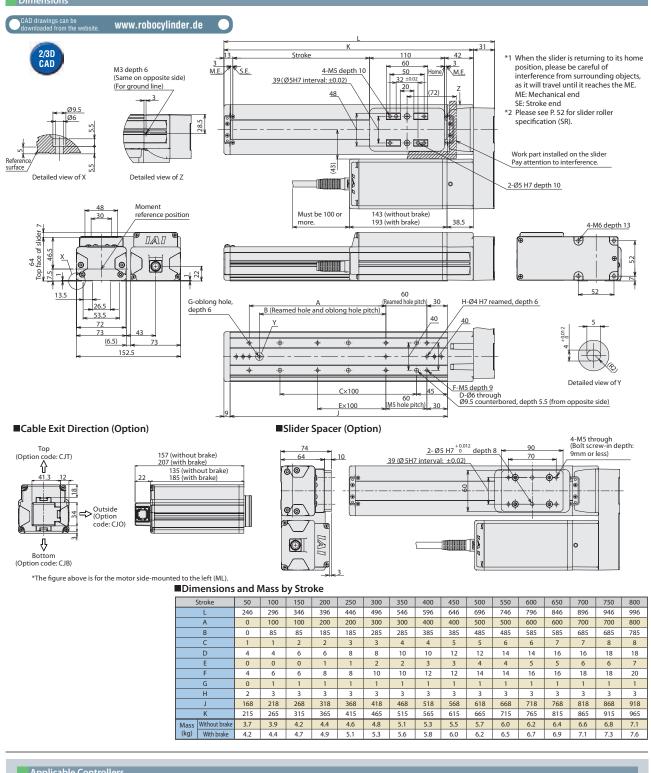
Actuator Specifications

Lead 8

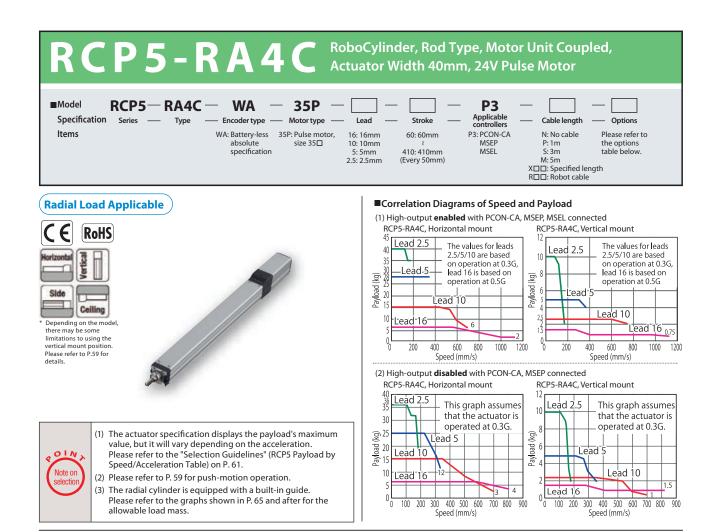

4

1

ltem	Description
Drive system	Ball screw Ø12mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*2)	Ma: 11.6N•m, Mb: 16.6N•m, Mc: 33.7N•m
Static allowable moment	Ma: 51.2N•m, Mb: 73.1N•m, Mc: 148N•m
Ambient operating temperature humidity	0 to 40°C 85% BH or less (Non-condensing)


(*1) The values in brackets [] are for Lead 24.

(*2) Assumes a standard rated life of 5000km Reference for overhang load lengths / Ma: 230mm or less, Mb, Mc: 230mm or less



(Note)

The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power		Reference page
sitioner type (High-output specification)	Ű.	PCON-CA-56PWAI-①-2-0		512 points	DC24V		
lse train type (High-output specification)	A	PCON-CA-56PWAI-PL®-2-0	1 C: 8 (4 when high-output enabled) LC: 6 (3 when high-output enabled)	512 points			→P. 69
eld network type (High-output specification)		PCON-CA-56PWAI-@-0-0		768 points			
lenoid valve multi-axis type (PIO specification)	1000	MSEP		3 points			>0.77
sitioner multi-axis type (Field network specification)		MSEP		256 points		→F	→P. 77
ogram control multi-axis safety category type	1	MSEL-PG-1-56PWAI-①-2-4	- 4	30000 points	Single-phase AC 100V~230V		→P. 87
ogram control multi-axis safety category type (w/ network board)	2	MSEL-PG-1-56PWAI0-4					77.07

							Stroke a	and Ma					
Lead (mm)	Connected controller			Maximum push force (N)	Stroke (mm)		Lead (mm)	Connec					
1	High-output enabled						16	High-c					
16	High-output disabled		1	48			10	High-o					
	High-output enabled	12	2.5	77			10	High-c					
	High-output disabled	10	2		60~	60	60~41	60~410			60~410		10
	High-output enabled	25	-	455			5	High-o					
5	High-output disabled	22	э	155			5	High-o					
1 25	High-output enabled	40	10	210			25	High-o					
2.5	High-output disabled	35	10	510			2.5	High-o					
		Image: controller controller 16 High-output enabled 10 High-output disabled High-output disabled High-output enabled High-output disabled High-output disabled 2.5 High-output enabled	(rmm) controller Horizontal lug 16 High-output enabled 5 10 High-output disabled 12 10 High-output disabled 10 10 High-output disabled 25 High-output disabled 22 High-output disabled 40 2.5 High-output enabled	Image controller Harizontal (kg) Vertical (kg) 16 High-output enabled High-output disabled 5 1 10 High-output enabled High-output enabled 12 2.5 High-output disabled 10 2 5 High-output enabled 25 6 High-output disabled 22 7 High-output enabled 22 10 High-output enabled 20	Image controller Horizontal (kg) Vertical (kg) pushfore (N) 16 High-output enabled High-output disabled 5 1 48 10 High-output enabled 12 2.5 77 High-output enabled 10 2 77 High-output enabled 25 5 1155 High-output enabled 22 3 155 High-output enabled 40 10 310	Comm controller Horizontal ligi Vertical ligi push force (N) (mm) 16 High-output enabled High-output disabled 5 1 48 48 10 High-output enabled High-output disabled 10 2.5 77 60~410 (Every 5 High-output disabled 10 2 5 155 4 High-output enabled 22 5 155 7 High-output enabled 22 10 310	Lead (mm) Connected controller Maximum payload (mm) Maximum payload (mm) Stroke (mm) 16 High-output enabled (High-output disabled 12 5 1 48 10 High-output disabled 10 2 77 High-output disabled 25 5 155 High-output disabled 22 5 105 High-output disabled 40 10 310	$\begin{tabular}{ c c c c c c c } \hline $Lead$ & $Maximum payload$ & $Maximum$ Stroke$ \\ \hline (mm) & $Connected$ & $Maximum payload$ & $Maximum$ Stroke$ \\ \hline (mm) & $Maximum$ Stroke$ & (mm) \\ \hline (mm) & $High-output enabled$ & 5 & 1 & 48 & $$16$ \\ \hline $High-output enabled$ & 12 & 2.5 & 77 & $60~410$ & $(Every$ & 5 & 15 & 1 & 16 & 10 & 2 & 5 & 15 & 15 &$					

	Stroke a	(Unit: mm/s)		
	Lead (mm)	Connected controller	60~360 (Every 50mm)	410 (mm)
	16	High-output enabled	1120	1080
	16	High-output disabled	84	0
	10	High-output enabled	High-output enabled 700	
		High-output disabled	700	685
	5	High-output enabled		340
	5	High-output disabled	350	540
	2.5	High-output enabled	175	170
	2.3	High-output disabled	175	170

Legend: ① Stroke ② Cable length ③ Options

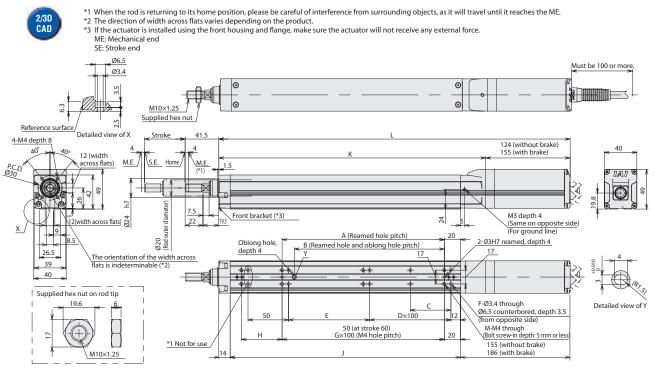
Cable Length							
Туре		Cable code					
Standard type	P (1m)	S (3m)	M (5m)				
Special length		X06 (6m) ~X10 (10) X11 (11m)~X15 (15) X16 (16m)~X20 (20)	m)				
Robot cable		R01 (1m) ~R03 (3m R04 (4m) ~R05 (5m R06 (6m) ~R10 (100 R11 (11m)~R15 (15 R16 (16m)~R20 (20	m) m)				

Options		
Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Right)	CJR	→P. 11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Flange	FL	→P. 12
Tip adapter (Flange)	FFA	→P. 12
Tip adapter (Internal thread)	NFA	→P. 13
Tip adapter (Keyway)	KFA	→P. 13
Non-motor end specification	NM	→P. 11

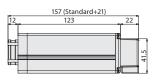
Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø8mm, rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	Ø20mm Aluminum
Rod non-rotation precision (*1)	±0 deg
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

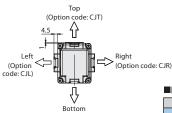
(*1) Rod's angular displacement in rotational direction with no applied load is shown.

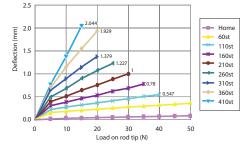
Offset distance at end of rod (100mm or less)

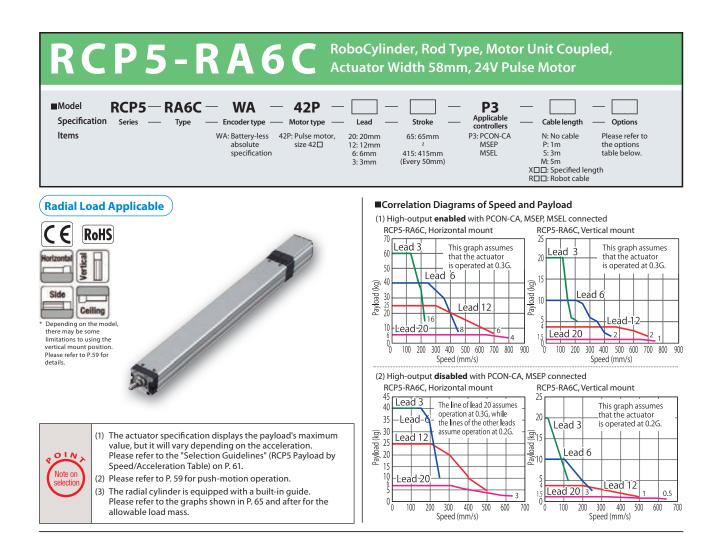

Load at end of rod

Dimensions


CAD drawings can be downloaded from the website.


www.robocylinder.de


Cable Exit Direction (Option)


(Option code: CJB)

Rod Deflection of RCP5-RA4C (Reference Values)

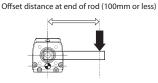
Dimen	sions and Mass	s by St	roke						
	Stroke	60	110	160	210	260	310	360	410
	Without brake	303	353	403	453	503	553	603	653
L	With brake	334	384	434	484	534	584	634	684
	A	50	100	100	200	200	300	300	400
	В	35	85	85	185	185	285	285	385
	С	25	50	50	50	50	50	50	50
	D	0	0	1	1	2	2	3	3
E		50	100	50	100	50	100	50	100
	F		8	10	10	12	12	14	14
	G		1	1	2	2	3	3	4
	Н	50	50	100	50	100	50	100	50
	J	134	184	234	284	334	384	434	484
	К	179	229	279	329	379	429	479	529
	M	6	6	6	8	8	10	10	12
Allowable sta	atic load on rod tip (N)	55.8	44.6	37.1	31.7	27.6	24.3	21.7	19.5
Allowable dynamic load	Load offset 0mm	25.4	19.5	15.5	12.8	10.8	9.2	7.9	6.9
on rod tip (N)	Load offset 100mm	16.5	14.5	12.4	10.7	9.2	8.0	7.0	6.2
Allowable stati	ic torque on rod tip (N+m)	5.6	4.5	3.8	3.2	2.8	2.5	2.3	2.1
Allowable dyna	mic torque on rod tip (N•m)	1.7	1.5	1.2	1.1	0.9	0.8	0.7	0.6
Mass (kg)	Without brake	1.1	1.2	1.3	1.4	1.6	1.7	1.8	1.9
Mass (kg)	With brake	1.3	1.4	1.5	1.6	1.8	1.9	2.0	2.1

	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	Ű.	PCON-CA-35PWAI-①-2-0		512 points		
Pulse train type (High-output specification)		PCON-CA-35PWAI-PL [®] -2-0	1	512 points		→P. 69
Field network type (High-output specification)		PCON-CA-35PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	and a	MSEP	C: 8 (4 when high-output enabled)	3 points		ND 77
Positioner multi-axis type (Field network specification)	HII.	MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. 77
Program control multi-axis safety category type		MSEL-PG-1-35PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	-	MSEL-PG-1-35PWAI0-4	+	50000 points	100V~230V	71.07

Lead and Payload								Stroke a	and Maximum S	
Model number	Lead (mm)				Lead (mm)	Connected contro				
RCP5-RA6C-WA-42P-20-①-P3-②-③	20	High-output enabled	6 1	1.5	56			20	High-output enabl	
RCP5-RA6C-WA-42P-20-12-12-12-12-12-12	20	High-output disabled			00				High-output disabl	
	12	High-output enabled	25	25	4	93			12	High-output enabl
RCP5-RA6C-WA-42P-12-①-P3-②-③		High-output disabled	25	23 4		65~415 (Every	5	12	High-output disabl	
RCP5-RA6C-WA-42P-6-①-P3-②-③	6	High-output enabled	40	40	10	185	50mm)		6	High-output enable
мсгэ-маос-wa-42г-о-ш-гэ-ш-	0	High-output disabled	40	10	185			0	High-output disabl	
RCP5-RA6C-WA-42P-3-①-P3-②-③	3	High-output enabled	60	20	370			3	High-output enable	
NCF 5-NAUC-WA-42F-5-0-F5-2-0		High-output disabled	40	20	570			5	High-output disabl	

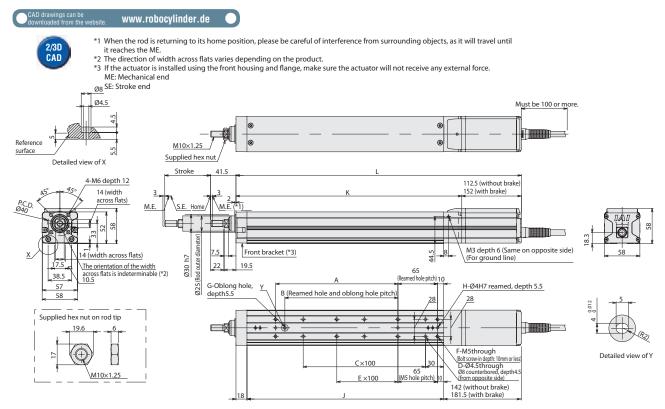
Stroke	(Unit: mm/s				
Lead (mm)	Connected controller	65~365 (Every 50mm)	415 (mm)		
20	High-output enabled	80	D		
20	High-output disabled	64	D		
12	High-output enabled	700			
12	High-output disabled	500			
6	High-output enabled	450			
°	High-output disabled	250			
3	High-output enabled	225 220			
3	High-output disabled	125			

Cable Length	1						
Туре		Cable code					
Standard type	P (1m) S (3m) M (5m)						
		X06 (6m) ~X10 (10)					
Special length	X11 (11m)~X15 (15m)						
		X16 (16m)~X20 (20	m)				
		R01 (1m) ~R03 (3m	1)				
		R04 (4m) ~R05 (5m	1)				
Robot cable		R06 (6m) ~R10 (10)	m)				
1		R11 (11m)~R15 (15	m)				
1		R16 (16m)~R20 (20	m)				

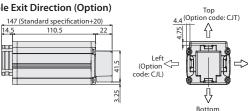

Ontions

Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P.11
Cable exit direction (Bottom)	CJB	→P. 11
Flange	FL	→P. 12
Tip adapter (Flange)	FFA	→P. 12
Tip adapter (Internal thread)	NFA	→P. 13
Tip adapter (Keyway)	KFA	→P. 13
Non-motor end specification	NM	→P. 11

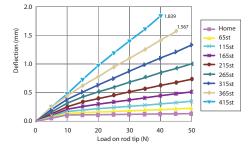
Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø10mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	Ø25mm Aluminum
Rod non-rotation precision (*2)	±0 deg
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)


(*1) The values in brackets [] are for Lead 20.

(*2) Rod's angular displacement in rotational direction with no applied load is shown.

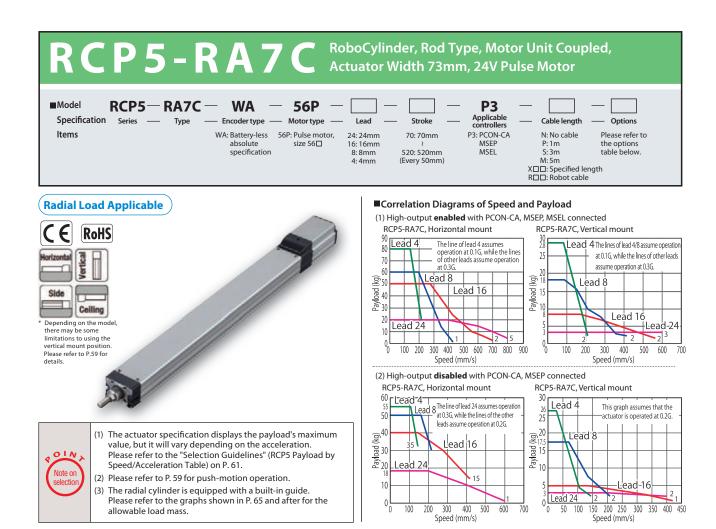


Load at end of rod



Cable Exit Direction (Option)

Right (Option code: CJR) Bottom (Option code: CJB)

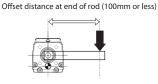

■Rod Deflection of RCP5-RA6C (Reference Values)

Dimensions and Mass by Stroke

	Stroke	65	115	165	215	265	315	365	415
	Without brake	332	382	432	482	532	582	632	682
L	With brake	371.5	421.5	471.5	521.5	571.5	621.5	671.5	721.5
	A			100	200	200	300	300	400
	В	0	85	85	185	185	285	285	385
	С	1	1	2	2	3	3	4	4
	D	4	4	6	6	8	8	10	10
E		0	0	0	1	1	2	2	3
F		4	6	6	8	8	10	10	12
	G		1	1	1	1	1	1	1
	н		3	3	3	3	3	3	3
	J	172	222	272	322	372	422	472	522
	К	219.5	269.5	319.5	369.5	419.5	469.5	519.5	569.5
Allowable sta	atic load on rod tip (N)	113.8	92.6	78.0	67.3	59.0	52.5	47.2	42.8
Allowable	Load offset 0mm	45.7	36.3	29.8	25.1	21.6	18.8	16.6	14.7
dynamic load on rod tip (N)		32.1	28.3	24.6	21.5	18.9	16.7	14.9	13.4
Allowable stati	c torque on rod tip (N•m)	11.5	9.4	7.9	6.8	6.0	5.4	4.9	4.5
Allowable dynai	mic torque on rod tip (N•m)	3.2	2.8	2.5	2.1	1.9	1.7	1.5	1.3
Mass (kg)	Without brake	1.8	2.0	2.2	2.4	2.6	2.9	3.1	3.3
iviass (Kg)	With brake	2.0	2.2	2.4	2.6	2.8	3.1	3.3	3.5

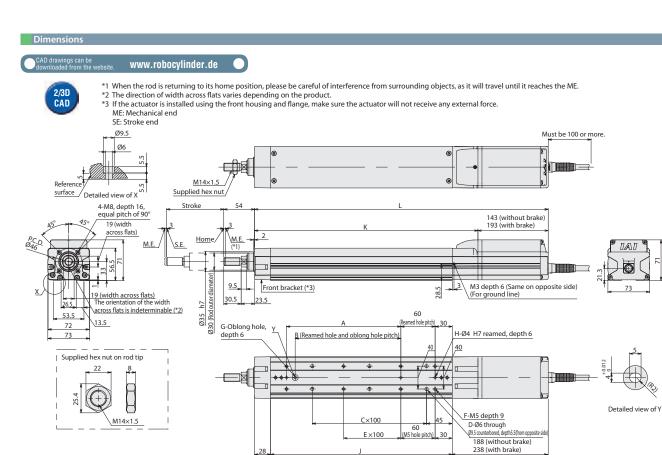
	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Refere page
Positioner type (High-output specification)	- M	PCON-CA-42PWAI-①-2-0		512 mainte		
Pulse train type (High-output specification)		PCON-CA-42PWAI-PL [®] -2-0	1	512 points		→ P. 6
Field network type (High-output specification)		PCON-CA-42PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	1	MSEP	C: 8 (4 when high-output enabled)	3 points		→P.7
Positioner multi-axis type (Field network specification)		MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. 7
Program control multi-axis safety category type		MSEL-PG-1-42PWAI-①-2-4	4	30000 points	Single-phase AC	→P.8
Program control multi-axis safety category type (w/ network board)	•	MSEL-PG-1-42PWAI4	4	30000 points	AC 100V~230V	-P. 8

							Stroke and Max	imum Speed Values in brack	ets < > are for vertical use. (Unit: mr
Lead (mm)	Connected controller			Maximum push force (N)	Stroke (mm)		Lead (mm)	Connected controller	70~520 (Every 50mm)
24	High-output enabled	20	3	102				High-output enabled	800 <600>
24	High-output disabled	18	3	182			24	High-output disabled	600 <400>
10	High-output enabled	50	8	272				High-output enabled	700 <560>
10	High-output disabled	40	5	2/3	70~520		10	High-output disabled	420
	High-output enabled	60	18	E 4 7	50mm)			High-output enabled	420
8	High-output disabled	50	17.5	547			8	High-output disabled	210
	High-output enabled	80	28	1004			4	High-output enabled	210
4	High-output disabled	55	26	1094			4	High-output disabled	140
	(mm) 24 16	Controller (mm) controller 24 High-output enabled High-output disabled High-output disabled 8 High-output enabled High-output disabled High-output enabled High-output disabled High-output enabled	Controller Horizontal ling 24 High-output enabled 20 High-output enabled 18 16 High-output enabled 50 High-output disabled 40 8 High-output enabled 60 High-output disabled 50 High-output disabled 50 High-output disabled 50 High-output enabled 50 High-output enabled 50	(mm) controller Horizontal (kg) Vertical (kg) 24 High-output enabled 20 3 16 High-output disabled 18 3 16 High-output enabled 50 8 High-output enabled 40 5 8 High-output enabled 50 17.5 High-output enabled 50 28 20 11 High-output enabled 50 17.5 20 High-output enabled 50 28	Comm controller Horizontal ligi Vertical ligi push force (N) 24 High-output enabled 20 3 182 16 High-output enabled 50 8 273 16 High-output enabled 60 18 54 18 High-output enabled 50 8 273 18 High-output enabled 60 18 547 19 High-output enabled 50 17.5 547 19 High-output enabled 80 28 1094	Comm controller Horizontal /kg/ Vertical /kg/ push force (N) (mm) 24 High-output enabled 20 3 182 (mm) 16 High-output enabled 50 8 273 70~520 8 High-output enabled 60 18 547 50mm) 4 High-output enabled 50 273 50mm)	Lead (mm) Connected controller Maximum payload Horizontal kg Maximum Vertical kg1 Stroke (mm) 24 High-output enabled 20 3 Just force (N) Stroke (mm) 16 High-output enabled 50 8 Just force (N) To520 (Every Somm) 8 High-output enabled 60 18 Just force (N) To520 (Every Somm) 4 High-output enabled 50 70520 (Every Somm) Just force (N)	Lead (mm) Connected controller Maximum payload Hrizontal /kg/ Maximum push force (N) Stroke (mm) Lead (mm) 24 High-output enabled 20 3 182 24 High-output enabled 50 8 273 70~520 (Every 50mm) 70~520 8 High-output enabled 60 18 547 50mm) 8 4 High-output enabled 50 17.5 50mm) 8	Comm Controller Hoizontal log Vertical log push force (N) (mm) Connected controller 24 High-output enabled 20 3 182 High-output disabled High-output disabled 16 High-output disabled 50 8 273 70~520 16 High-output disabled 8 High-output disabled 40 5 547 70~520 16 High-output disabled 1 High-output disabled 50 118 273 70~520 16 High-output disabled 8 High-output disabled 50 118 547 50mm) 8 High-output enabled 4 High-output disabled 50 17.5 50mm) 8 High-output disabled


Cable Length	1							
Туре		Cable code						
Standard type	P (1m)	P (1m) S (3m) M (5m)						
		X06 (6m) ~X10 (10)	m)					
Special length	X11 (11m)~X15 (15m)							
		X16 (16m)~X20 (20	m)					
		R01 (1m) ~R03 (3m	i)					
	R04 (4m) ~R05 (5m)							
Robot cable		R06 (6m) ~R10 (10m)						
		R11 (11m)~R15 (15	m)					
		R16 (16m)~R20 (20	m)					

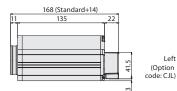
Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P.11
Cable exit direction (Bottom)	CJB	→P. 11
Flange	FL	→P. 12
Tip adapter (Flange)	FFA	→P. 12
Tip adapter (Internal thread)	NFA	→P. 13
Tip adapter (Keyway)	KFA	→P. 13
Non-motor end specification	NM	→P. 11

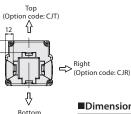
Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø12mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	Ø30mm Aluminum
Rod non-rotation precision (*2)	±0 deg
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)


(*1) The values in brackets [] are for Lead 24.

(*2) Rod's angular displacement in rotational direction with no applied load is shown.

Load at end of rod


Cable Exit Direction (Option)


1.0

0.5

0.0 0

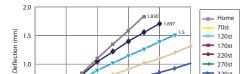
10

(Option code: CJB)

→ 320st → 370st

470st

∞

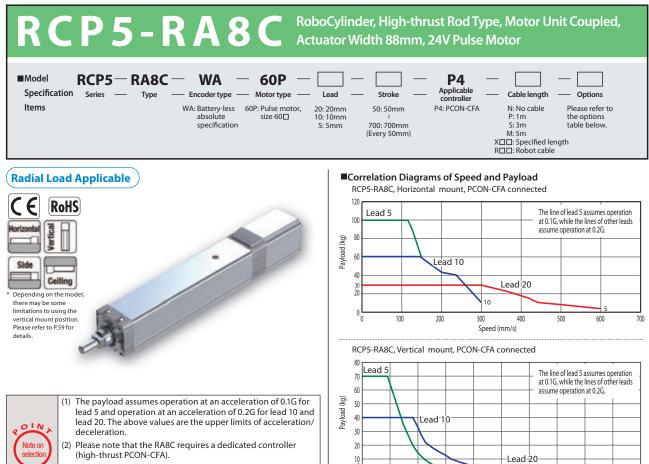

 \sim

Left

Dimensions and Mass by Stroke

40

50


30 Load on rod tip (N)

Rod Deflection of RCP5-RA7C (Reference Values)

	Stroke	70	120	170	220	270	320	370	420	470	520
	Without brake	384	434	484	534	584	634	684	734	784	834
L	With brake	434	484	534	584	634	684	734	784	834	884
	A	0	100	100	200	200	300	300	400	400	500
	В	0	85	85	185	185	285	285	385	385	485
	С	1	1	2	2	3	3	4	4	5	5
	D	4	4	6	6	8	8	10	10	12	12
	E	0	0	0	1	1	2	2	3	3	4
	F	4	6	6	8	8	10	10	12	12	14
	G	0	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3
	J	168	218	268	318	368	418	468	518	568	618
	К	241	291	341	391	441	491	541	591	641	691
	atic load on rod tip (N)	119.2	97.7	82.8	71.6	63.0	56.2	50.6	46.0	42.2	38.8
Allowable	Load offset 0mm	44.3	35.7	29.6	25.2	21.7	19.0	16.8	15.0	13.6	12.2
dynamic load on rod tip (N)	Load offset 100mm	33.9	29.7	25.7	22.4	19.7	17.4	15.5	14.0	12.8	11.5
Allowable stati	c torque on rod tip (N•m)	12.1	10.0	8.5	7.4	6.5	5.9	5.3	4.9	4.5	4.1
Allowable dynai	mic torque on rod tip (N•m)	3.4	3.0	2.6	2.2	2.0	1.7	1.6	1.4	1.3	1.2
Mass (kg)	Without brake	3.3	3.6	3.9	4.2	4.5	4.8	5.1	5.4	5.6	5.9
iviass (Kg)	With brake	3.8	4.1	4.4	4.7	5.0	5.3	5.6	5.9	6.1	6.4

		e select the type depending on you				 D (
Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	Ű.	PCON-CA-56PWAI-①-2-0		512 points		
Pulse train type (High-output specification)	A	PCON-CA-56PWAI-PL -2-0	1			→P. 69
Field network type (High-output specification)		PCON-CA-56PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)		MSEP	C: 8 (4 when high-output enabled)	3 points		
Positioner multi-axis type (Field network specification)	HH.	MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. 77
Program control multi-axis safety category type		MSEL-PG-1-56PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	: .	MSEL-PG-1-56PWAI-@-0-4	4	50000 points	AC 100V~230V	-7F. 67

71

(high-thrust PCON-CFA). (3) The radial cylinder is equipped with a built-in guide. Please refer to the graphs shown in P. 65 and after for the

allowable load mass.

Actuator Specifications																				
Lead and Payload Stroke and Maximum Speed Values in brackets <> are for vertical use. (Unit: mm/s)																				
Model number	Lead (mm)	Connected controller		n payload Vertical (kg)	Maximum push force (N)	Stroke (mm)		Lead (mm)	50 (mm)	100 (mm)	150 (mm)		250~350 (mm)		450 (mm)		550 (mm)		650 (mm)	700 (mm)
RCP5-RA8C-WA-60P-20-①-P4-②-③	20	PCON-CFA	30	5	500			20	280	405	505 <450>	585 <450>	600 <450>	520 <450>	440	360	320	280	240	220
RCP5-RA8C-WA-60P-10-①-P4-②-③	10	PCON-CFA	60	40	1,000	50~700 (Every 50mm)		10	280 <250>			300 250>		260 <250>	220	180	160	140	120	110
RCP5-RA8C-WA-60P-5-①-P4-②-③	5	PCON-CFA	100	70	2,000	501111)		5			150)		130	110	90	80	70	60	55
Legend: ① Stroke ② Cable length ③ Options	;																			

10

50

100

150

200

250

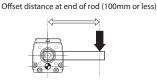
Speed (mm/s)

300

350

400

450


500

Cable Length										
Туре		Cable code								
Standard type	P (1m) S (3m) M (5m)									
Special length	X06 (6m) ~X10 (10m) X11 (11m)~X15 (15m) X16 (16m)~X20 (20m)									
Robot cable		R01 (1m) ~R03 (3m R04 (4m) ~R05 (5m R06 (6m) ~R10 (10 R11 (11m)~R15 (15 R16 (16m)~R20 (20	m) m)							

Options

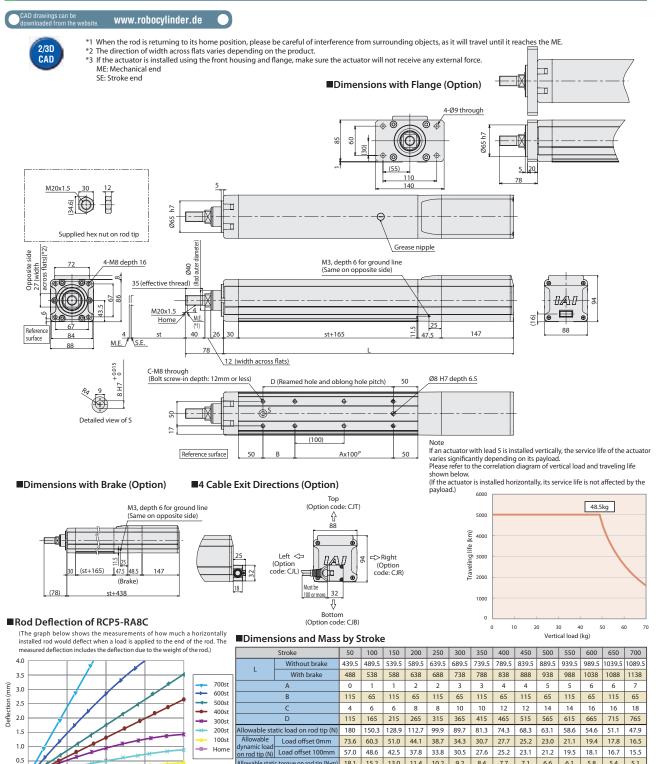
options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P.11
Cable exit direction (Bottom)	CJB	→P. 11
Flange	FL	→P.12
Non-motor end specification	NM	→P.11

Actuator Specifications							
ltem	Description						
Drive system	Ball screw Ø16mm, rolled C10						
Positioning repeatability	±0.02mm						
Lost motion	0.1mm or less						
Rod	Ø40mm Aluminum						
Rod non-rotation precision (*1)	±0 deg						
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65						
Rod tip overhang distance	100mm or less						
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)						
(*1) Rod's angular displacement in re	(*1) Rod's angular displacement in rotational direction with no applied load is shown.						

Load at end of rod

0.0

0


50

100

Load on rod tip (N)

150

200

Applicable Controllers								
The RCPS series actuators can be operated by the controllers indicated below. Please select the type depending on your intended use.								
External view	Model number	Input power		Reference page				
	PCON-CFA-60PWAI-NP-2-0 PCON-CFA-60PWAI-PN-2-0	512 points			→P. 69			
	PCON-CFA-60PWAI-PLN-2-0 PCON-CFA-60PWAI-PLP-2-0	—	DC24V					
	PCON-CFA-60PWAI-①-0-0	768 points						
	n be operated by the	n be operated by the controllers indicated below. Please select the type de External view Model number PCON-CFA-60PWAI-NP-2-0 PCON-CFA-60PWAI-PLN-2-0 PCON-CFA-60PWAI-PLN-2-0 PCON-CFA-60PWAI-PLP-2-0 PCON-CFA-60PWAI-PLP-2-0	n be operated by the controllers indicated below. Please select the type depending on your intended use. External view Model number Maximum number of positioning points PCON-CFA-60PWAI-NP-2-0 512 points PCON-CFA-60PWAI-PN-2-0 512 points PCON-CFA-60PWAI-PLN-2-0 —	n be operated by the controllers indicated below. Please select the type depending on your intended use. External view Model number Maximum number of positioning points Input power PCON-CFA-60PWAI-NP-2-0 PCON-CFA-60PWAI-PN-2-0 512 points PCON-CFA-60PWAI-PN-2-0 DC24V	n be operated by the controllers indicated below. Please select the type depending on your intended use. External view Model number Maximum number of positioning points Input power PCON-CFA-60PWAI-NP-2-0 PCON-CFA-60PWAI-PLN-2-0 512 points DC24V DC24V			

18.1 15.2 13.0 11.4 10.2 9.2 8.4 7.7

5.7

8.3

7.6 8.0 8.4 8.9 9.3 9.7 10.2 10.6 11.0 11.4 11.9 12.3 12.7

4.9 4.3 3.8 3.4 3.0 2.8

8.7 9.1 9.6 10.0 10.4 10.9 11.3 11.7

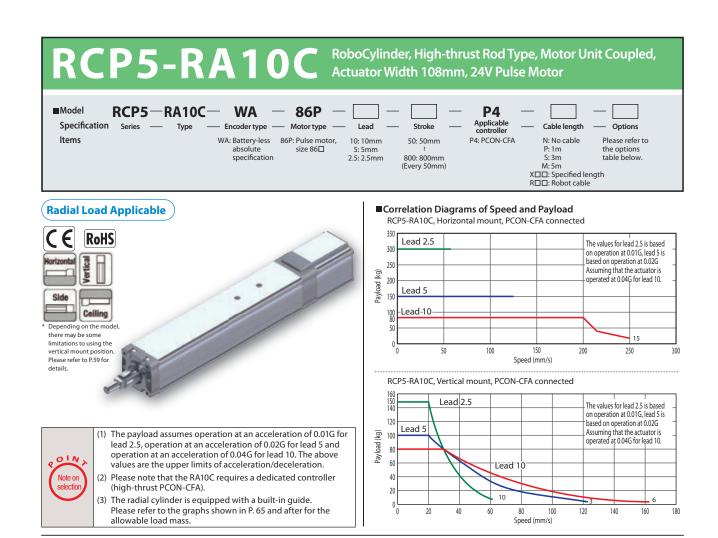
Allowable static torque on rod tip (N•m)

Allowable dynamic torque on rod tip (N•m)

Mass (kg)

Without brake

With brake


13.4 13.9

6.6 6.1 5.8 5.4 5.1

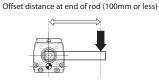
12.1 12.6 13.0

7.1

2.5 2.3 2.1 2.0 1.8 1.7 1.5

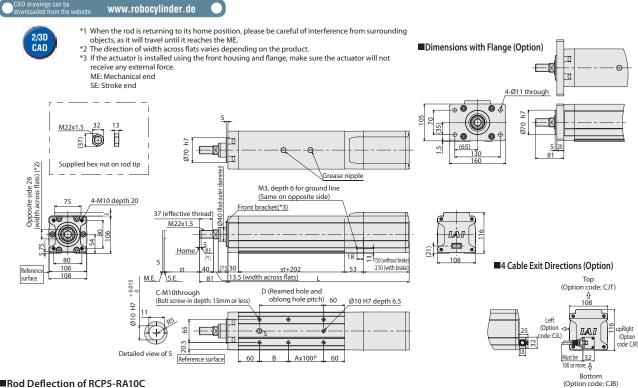
Actuator Specifications																				
Lead and Payload									e and	d Ma	ximu	m Spee	d Valu	ues in bi	rackets «	< > are f	or vertic	al use.	(Unit:	mm/s)
Model number	Lead (mm)	Connected controller		n payload Vertical (kg)	Maximum push force (N)	Stroke (mm)			50 (mm)	100 (mm)		200~400 (Every 50mm)				600 (mm)	650 (mm)	700 (mm)		
RCP5-RA10C-WA-86P-10-①-P4-②-③	10	PCON-CFA	80	80	1,500			10	117	167	200 <167>		250 167>		220 <167>	200 <167>	180 <167>	160	140	120
RCP5-RA10C-WA-86P-5-①-P4-②-③	5	PCON-CFA	150	100	3,000	50~800 (Every 50mm)		5	83		125		110	90	80	70	60	55	50	45
RCP5-RA10C-WA-86P-2.5-①-P4-②-③	2.5	PCON-CFA	300	150	6,000	Joinin	2	2.5				63			55	50	45	40	35	30

Legend: ① Stroke ② Cable length ③ Options

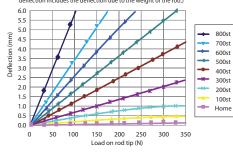

Cable Length									
Туре	Cable code								
Standard type	P (1m) S (3m) M (5m)								
)	KO6 (6m) ~X10 (10)	m)						
Special length	X11 (11m)~X15 (15m)								
	X16 (16m)~X20 (20m)								
	F	RO1 (1m) ~RO3 (3m	1)						
	F	R04 (4m) ~R05 (5m	ı)						
Robot cable	F	R06 (6m) ~R10 (10)	m)						
	I	R11 (11m)~R15 (15	m)						
	F	R16 (16m)~R20 (20	m)						

Options

options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P.11
Cable exit direction (Bottom)	CJB	→P. 11
Flange	FL	→P.12
Non-motor end specification	NM	→P.11

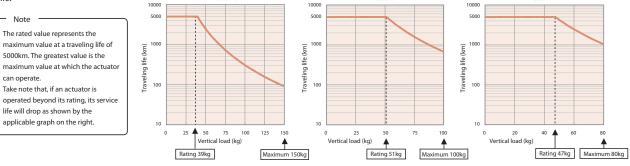

Actuator Specifications							
ltem	Description						
Drive system	Ball screw Ø20mm (Lead 2.5/10mm), Ø16mm (Lead 5mm), rolled C1						
Positioning repeatability	±0.02mm						
Lost motion	0.1mm or less						
Rod	Ø40mm Aluminum						
Rod non-rotation precision (*1)	±0 deg						
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65						
Rod tip overhang distance	100mm or less						
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)						
(*1) Rod's angular displacement in re	(*1) Rod's angular displacement in rotational direction with no applied load is shown.						

ry nou s'angular aisplacement in rotational ancetion marine


Load at end of rod

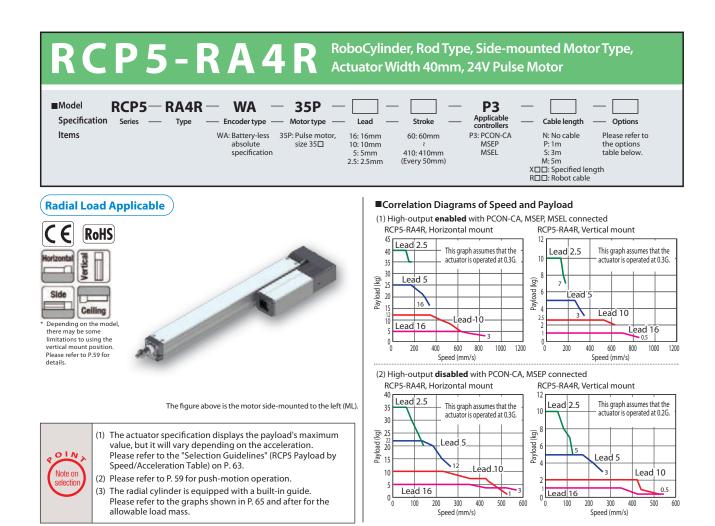
■Rod Deflection of RCP5-RA10C

(The graph below shows the measurements of how much a horizontally installed rod would deflect when a load is applied to the end of the rod. The measured deflection includes the deflection due to the weight of the rod.)



Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
_	Without brake	485	535	585	635	685	735	785	835	885	935	985	1035	1085	1135	1185	1235
L	With brake	545	595	645	695	745	795	845	895	945	995	1045	1095	1145	1195	1245	1295
	А	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
	В	132	82	132	82	132	82	132	82	132	82	132	82	132	82	132	82
	С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	D	132	182	232	282	332	382	432	482	532	582	632	682	732	782	832	882
Allowable sta	tic load on rod tip (N)	316.9	268.4	232.6	205.1	183.4	165.7	151.0	138.6	128.1	119.0	111.0	103.9	97.7	92.1	87.0	82.5
Allowable	Load offset 0mm	119.1	99.1	84.7	73.8	65.3	58.5	52.8	48.1	44.0	40.5	37.5	34.8	32.4	30.2	28.3	26.5
dynamic load on rod tip (N)		100.7	85.9	74.9	66.3	59.3	53.6	48.8	44.7	41.2	38.1	35.4	32.9	30.8	28.8	27.0	25.4
Allowable stati	c torque on rod tip (N•m)	31.8	27.0	23.4	20.7	18.5	16.8	15.3	14.1	13.1	12.2	11.4	10.7	10.1	9.6	9.1	8.6
Allowable dynar	nic torque on rod tip (N•m)	10.1	8.6	7.5	6.6	5.9	5.4	4.9	4.5	4.1	3.8	3.5	3.3	3.1	2.9	2.7	2.5
Maga (1.2)	Without brake	11.5	12.2	12.9	13.6	14.3	15	15.7	16.4	17.1	17.8	18.5	19.2	19.9	20.6	21.3	22
Mass (kg)	With brake	13.1	13.8	14.5	15.2	15.9	16.6	17.3	18	18.7	19.4	20.1	20.8	21.5	22.2	22.9	23.6


Correlation Diagrams of Vertical Load and Traveling Life

• Since the RCP5-RA10C has a greater maximum thrust than other types, its service life varies significantly depending on the payload and push force applied when the actuator is installed vertically. When selecting an appropriate type from the correlation diagram of speed and payload or correlation diagram of push force and current-limiting value, check its traveling life on the correlation diagram of payload and service life as well as on the correlation diagram of push force and service Lead 2.5 life. Lead 5 Lead 10

Applicable Controllers									
The RCP5 series actuators can be operated by the controllers indicated below. Please select the type depending on your intended use.									
Name	External view	Model number	Maximum number of positioning points	Input power		Reference page			
Positioner type		PCON-CFA-86PWAI-NP-2-0 PCON-CFA-86PWAI-PN-2-0	512 points						
Pulse-train type		PCON-CFA-86PWAI-PLN-2-0 PCON-CFA-86PWAI-PLP-2-0	—	DC24V		→P. 69			
Field network type		PCON-CFA-86PWAI-①-0-0	768 points						
* Eield network specificati	ion code (D)/ CC DD (· · · · ·			·			

.C, PR, CN, PRT, E

							Stroke a	and Maximum	
Lead (mm)	Connected controller			Maximum push force (N)	Stroke (mm)		Lead (mm)	Connected cont	
10	High-output enabled			48			16	High-output ena	
	High-output disabled		1				10	High-output disa	
10	High-output enabled	12	2.5	77	60~410				High-output ena
	High-output disabled	10	2						
-	High-output enabled	25	-	155	(Every 50mm)		5	High-output enal	
5	High-output disabled	22	5	155			э	High-output disa	
1 25	High-output enabled	40	10	210			25	High-output ena	
2.5	High-output disabled	35	10	510			2.5	High-output disa	
		Letter Controller (mm) controller 16 High-output enabled High-output disabled High-output enabled 5 High-output enabled High-output disabled High-output enabled Jone High-output enabled High-output disabled High-output enabled	Interface Controller Horizontallig 16 High-output enabled 5 10 High-output disabled 12 High-output enabled 12 10 High-output enabled 25 10 High-output disabled 22 10 High-output disabled 22 10 High-output disabled 22 10 2.5 High-output enabled 22	Letter Controller Horizontal (kg) Vertical (kg) 16 High-output enabled High-output disabled 5 1 10 High-output enabled 12 2.5 High-output enabled 10 2 5 High-output enabled 25 6 High-output disabled 22 7 High-output enabled 22 10 High-output enabled 20 2.5 High-output enabled 20	Image controller Horizontal (u) Vertical (u) pushfore (N) 16 High-output enabled 5 1 48 10 High-output disabled 5 1 48 10 High-output disabled 10 2 77 High-output enabled 25 77 155 High-output disabled 22 5 155 High-output enabled 22 310 310	Controller Horizontal (lig) Vertical (lig) push force (N) (mm) 16 High-output enabled High-output disabled 5 1 48 10 High-output enabled High-output disabled 12 2.5 77 High-output disabled 10 2 77 60~410 (Every 50mm) 2.5 High-output disabled 22 5 155	Lead (mm) Connected controller Maximum Hrizzottal (kg) Maximum Vertical (kg) Stroke (mm) 16 High-output enabled High-output disabled 5 1 48 10 High-output disabled 10 2.5 77 High-output disabled 25 5 1155 High-output disabled 22 5 155 High-output disabled 20 100 310	$\begin{tabular}{ c c c c c c } \hline $Lead$ & $Maximum payload$ & $Maximum$ Stroke$ \\ \hline (mm) & $Connected$ & $Maximum payload$ & $Maximum$ Stroke$ \\ \hline (mm) & $High-output enabled$ & $Vertical (kg)$ push force (N)$ & (mm) & $$	

■Stroke a	Stroke and Maximum Speed (Unit: mm									
Lead (mm)	Connected controller	60~360 (Every 50mm)	410 (mm)							
16	High-output enabled	84	0							
16	High-output disabled	out disabled 560								
	High-output enabled	610								
10	High-output disabled	525								
5	High-output enabled	350	340							
2	High-output disabled	260								
2.5	High-output enabled	175	170							
2.5	High-output disabled	13	D							

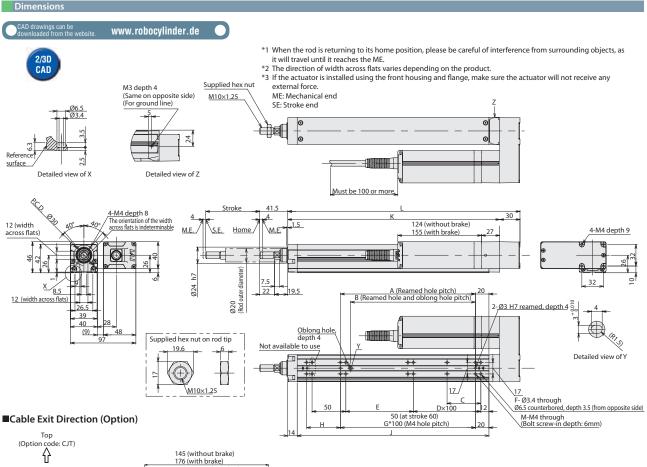
Legend: ① Stroke ② Cable length ③ Options

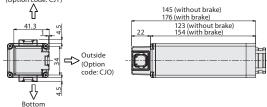
Cable Length	1		
Туре		Cable code	
Standard type	P (1m)	S (3m)	M (5m)
Special length		X06 (6m) ~X10 (10) X11 (11m)~X15 (15) X16 (16m)~X20 (20)	m)
Robot cable		R01 (1m) ~R03 (3m R04 (4m) ~R05 (5m R06 (6m) ~R10 (100 R11 (11m)~R15 (15 R16 (16m)~R20 (20	m) m)

Options		
Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Outside)	CJO	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Flange (*1)	FL	→P. 12
Tip adapter (Flange) (*1)	FFA	→P. 12
Tip adapter (Internal thread) (*1)	NFA	→P. 13
Tip adapter (Keyway) (*1)	KFA	→P. 13
Motor side-mounted to the left (Standard)	ML	→P. 11
Motor side-mounted to the right	MR	→P. 11
Non-motor end specification	NM	→P. 11

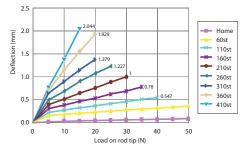
Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø8mm, rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	Ø20mm Aluminum
Rod non-rotation precision (*1)	±0 deg
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) Rod's angular displacement in rotational direction with no applied load is shown.


Offset distance at end of rod (100mm or less)

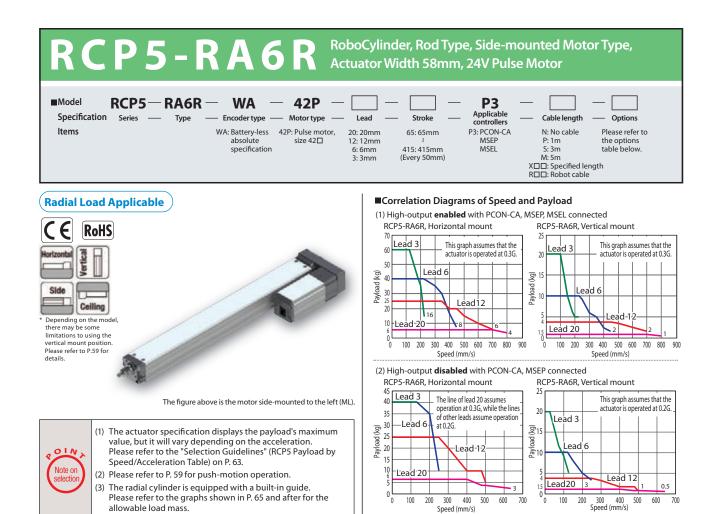


Load at end of rod


*1) Depending on the stroke, some rod attachment options are not available. Also, when selecting the shorter strokes, please be careful of nearby objects. Some interference may occur. Please refer to P. 14.

(Option code: CJB) *The figure above is for the motor side-mounted to the left (ML).

■Rod Deflection of RCP5-RA4R (Reference Values)



Dimensions and Mass by Stroke

	Stroke	60	110	160	210	260	310	360	410
	L	194	244	294	344	394	444	494	544
	A	50	100	100	200	200	300	300	400
	В	35	85	85	185	185	285	285	385
	С	25	50	50	50	50	50	50	50
	D	0	0	1	1	2	2	3	3
	E	50	100	50	100	50	100	50	100
F		8	8	10	10	12	12	14	14
G		-	1	1	2	2	3	3	4
н		50	50	100	50	100	50	100	50
J		134	184	234	284	334	384	434	484
	К	164	214	264	314	364	414	464	514
	М	6	6	6	8	8	10	10	12
Allowable sta	atic load on rod tip (N)	55.8	44.6	37.1	31.7	27.6	24.3	21.7	19.5
Allowable dynamic load	Load offset 0mm	25.4	19.5	15.5	12.8	10.8	9.2	7.9	6.9
on rod tip (N)		16.5	14.5	12.4	10.7	9.2	8.0	7.0	6.2
Allowable stati	c torque on rod tip (N•m)	5.6	4.5	3.8	3.2	2.8	2.5	2.3	2.1
Allowable dyna	mic torque on rod tip (N•m)	1.7	1.5	1.2	1.1	0.9	0.8	0.7	0.6
Mass (kg)	Without brake	1.4	1.5	1.6	1.7	1.9	2.0	2.1	2.2
iviass (Kg)	With brake	1.6	1.7	1.8	1.9	2.1	2.2	2.3	2.4

The RCP5 series actuators can be operated by the controllers indicated below. Please select the type depending on your intended use.									
	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page			
ositioner type (High-output specification)	Ű.	PCON-CA-35PWAI-①-2-0		512 points					
Pulse train type (High-output specification)		PCON-CA-35PWAI-PL [®] -2-0	1	512 points		→P. 69			
ield network type (High-output specification)		PCON-CA-35PWAI0-0		768 points	DC24V				
olenoid valve multi-axis type (PIO specification)	m	MSEP	C: 8 (4 when high-output enabled)	3 points		→P. 77			
ositioner multi-axis type (Field network specification)	iiii .	MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. //			
rogram control multi-axis safety category type		MSEL-PG-1-35PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87			
rogram control multi-axis safety category type (w/ network board)	2 H	MSEL-PG-1-35PWAI0-4	-	50000 points	100V~230V	71.07			

*(1) Field network specification code *(1) Field network specification) or P (PNP specification *The high output enabled operation is only available when the "High-output setting specs" is selected in the MSEP-C/LC.

Actuator Specifications									
Lead and Payload								Stroke a	and Maximum S
Model number	Lead (mm)	Connected controller		n payload Vertical (kg)	Maximum push force (N)	Stroke (mm)		Lead (mm)	Connected contro
	20	High-output enabled	6	1.5	56]	20	High-output enable
RCP5-RA6R-WA-42P-20-①-P3-②-③	20	High-output disabled			50			20	High-output disable
	10	High-output enabled	25	4	93	65~415		12	High-output enable
RCP5-RA6R-WA-42P-12-①-P3-②-③	12	High-output disabled							High-output disable
RCP5-RA6R-WA-42P-6-①-P3-②-③	6	High-output enabled				(Every 50mm)		6	High-output enable
RCP5-RA6R-WA-42P-6-1-P3-12-13	0	High-output disabled	40	10	185			0	High-output disable
	2	High-output enabled	60	20	370			2	High-output enable
RCP5-RA6R-WA-42P-3-①-P3-②-③	3	High-output disabled	40	20	370			3	High-output disable
egend: ① Stroke ② Cable length ③ Options			·		<u>.</u>	·		<u> </u>	

Stroke	(Unit: mm/s						
Lead (mm)	Connected controller	65~365 (Every 50mm)	415 (mm)				
20	High-output enabled	80)				
20	High-output disabled	High-output disabled 640					
	High-output enabled	70	00				
12	High-output disabled	50	00				
6	High-output enabled	450					
0	High-output disabled	250					
3	High-output enabled	225	220				
3	High-output disabled	125					

.

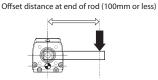
Cable Length Cable code Туре
 S (3m)

 X06 (6m) ~X10 (10m)

 X11 (11m)~X15 (15m)

 X16 (16m)~X20 (20m)

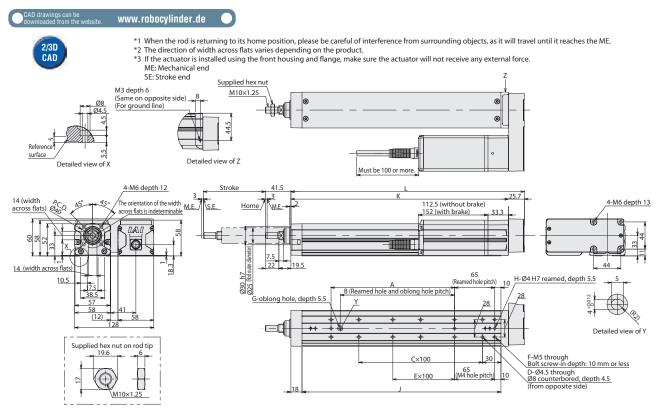
 R01 (1m) ~R03 (3m)

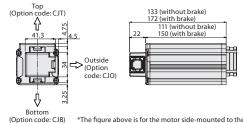

 R04 (4m) ~R05 (5m)
 P (1m) Standard type M (5m) Special length **R06** (6m) ~**R10** (10m) **R11** (11m)~**R15** (15m) **R16** (16m)~**R20** (20m) Robot cable

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Outside)	CJO	→P.11
Cable exit direction (Bottom)	CJB	→P.11
Flange (*1)	FL	→P. 12
Tip adapter (Flange) (*1)	FFA	→P. 12
Tip adapter (Internal thread) (*1)	NFA	→P. 13
Tip adapter (Keyway) (*1)	KFA	→P. 13
Motor side-mounted to the left (Standard)	ML	→P.11
Motor side-mounted to the right	MR	→P.11
Non-motor end specification	NM	→P.11

Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø10mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	Ø25mm Aluminum
Rod non-rotation precision (*2)	±0 deg
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

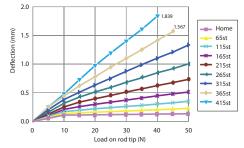
(*1) The values in brackets [] are for Lead 20.


(*2) Rod's angular displacement in rotational direction with no applied load is shown.


Load at end of rod

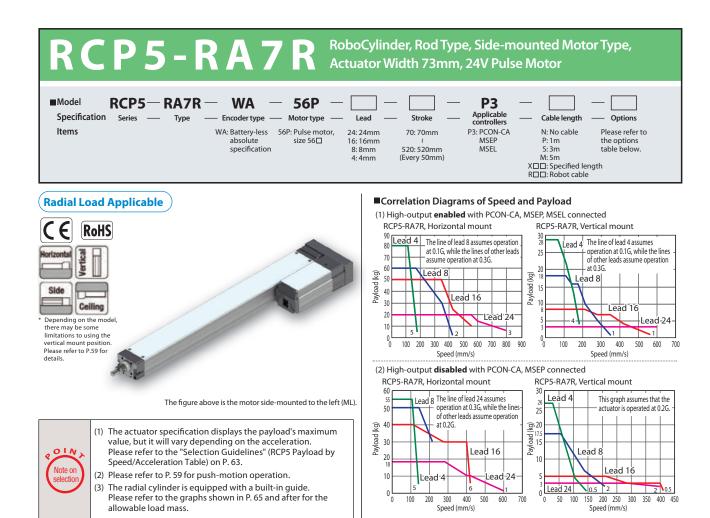
Depending on the stroke, some rod attachment options are not available.

Also, when selecting the shorter strokes, please be careful of nearby objects. Some interference may occur. Please refer to P. 14.



Cable Exit Direction (Option)

*The figure above is for the motor side-mounted to the left (ML).

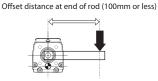

■Rod Deflection of RCP5-RA6R (Reference Values)

Dimensions and Mass by Stroke

Stroke	65	115	165	215	265	315	365	415
L		278	328	378	428	478	528	578
A	0	100	100	200	200	300	300	400
В	0	85	85	185	185	285	285	385
С	1	1	2	2	3	3	4	4
D	4	4	6	6	8	8	10	10
E	0	0	0	1	1	2	2	3
F	4	6	6	8	8	10	10	12
G		1	1	1	1	1	1	1
Н		3	3	3	3	3	3	3
J	172	222	272	322	372	422	472	522
K	202.3	252.3	302.3	352.3	402.3	452.3	502.3	552.3
atic load on rod tip (N)	113.8	92.6	78.0	67.3	59.0	52.5	47.2	42.8
Load offset 0mm	45.7	36.3	29.8	25.1	21.6	18.8	16.6	14.7
Load offset 100mm	32.1	28.3	24.6	21.5	18.9	16.7	14.9	13.4
ic torque on rod tip (N•m)	11.5	9.4	7.9	6.8	6.0	5.4	4.9	4.5
mic torque on rod tip (N•m)	3.2	2.8	2.5	2.1	1.9	1.7	1.5	1.3
Without brake	2.2	2.4	2.6	2.8	3.0	3.3	3.5	3.7
With brake	2.4	2.6	2.8	3.0	3.2	3.5	3.7	3.9
	L A B C D E F G H J X K Load offset 0mm Load offset 100mm c torque on rod tip (N-m) mic torque on rod tip (N-m) Without brake	L 228 A 0 B 0 C 1 D 4 E 0 F 4 G 0 H 2 J 172 K 2023 atic load on rod tip (N) 113.8 Load offset 0mm 45.7 Load offset 100mm 32.1 t ctorque on rod tip (N-m) 1.5 mit orque on rod tip (N-m) 3.2 Without brake 2.2	L 228 278 A 0 100 B 0 85 C 1 1 D 4 4 E 0 0 F 4 6 G 0 1 H 2 3 J 172 222 K 2023 252.3 totad offset 0mm 45.7 36.3 Load offset 100mm 32.1 28.3 totaque on rod tip (N-m) 11.5 9.4 mit torque on rod tip (N-m) 3.2 2.8 Without brake 2.2 2.4	L 228 278 328 A 0 100 100 B 0 85 85 C 1 1 2 D 4 4 6 E 0 0 0 F 4 6 6 G 0 1 1 H 2 3 3 J 172 222 272 K 2023 252.3 302.3 atic load on rod tip (N) 11.38 92.6 78.0 Load offset 0mm 45.7 36.3 29.8 Load offset 100mm 32.1 28.3 24.6 ct orque on rod tip (N-m) 1.5 9.4 7.9 mit orque on rod tip (N-m) 3.2 2.8 2.5 Without brake 2.2 2.4 2.6	L 228 278 328 378 A 0 100 100 200 B 0 85 85 185 C 1 1 2 2 D 4 4 6 6 E 0 0 0 1 F 4 6 6 8 G 0 1 1 1 H 2 3 3 3 3 J 172 222 272 322.3 K 202.3 252.3 30.3 35.3 atticload on rod tip (N) 113.8 92.6 78.0 67.3 Load offset 0mm 45.7 36.3 29.8 25.1 Load offset 100mm 32.1 28.3 24.6 21.5 ctorque on rod tip (N+m) 11.5 9.4 7.9 6.8 mit torque on rod tip (N+m) 3.2 2.8 2.5 2.1 <td>L 228 278 328 378 428 A 0 100 100 200 200 B 0 85 85 185 185 C 1 1 2 2 3 D 4 4 6 6 8 E 0 0 0 1 1 F 4 6 6 8 8 G 0 1 1 1 1 H 2 3 3 3 3 3 J 172 222 272 322 372 K 2023 25.3 302.3 352.3 402.3 Load offset 0nm 45.7 36.3 29.8 25.1 21.6 Load offset 100m 32.1 28.3 24.6 21.5 18.9 ctorque on rod tip (N=1) 3.2 2.8 2.5 2.1 1.9 <t< td=""><td>L 228 278 328 378 428 478 A 0 100 100 200 200 300 B 0 85 85 185 185 285 C 1 1 2 2 3 3 D 4 4 6 6 8 8 E 0 0 0 1 1 2 F 4 6 6 8 8 100 G 0 1 1 1 1 1 H 2 3 3 3 3 3 3 J 172 222 272 322 372 422 K 2023 25.23 302.3 35.3 402.3 452.3 Load offset 0nm 45.7 36.3 29.8 25.1 21.6 18.8 Load offset 100m 32.1 28.3 24.6</td><td>L 228 278 328 378 428 478 528 A 0 100 100 200 200 300 300 B 0 85 85 185 185 285 285 C 1 1 2 2 3 3 4 D 4 4 6 6 8 8 10 20 F 4 6 6 8 8 10 10 12 2 F 4 6 6 8 8 10 10 1</td></t<></td>	L 228 278 328 378 428 A 0 100 100 200 200 B 0 85 85 185 185 C 1 1 2 2 3 D 4 4 6 6 8 E 0 0 0 1 1 F 4 6 6 8 8 G 0 1 1 1 1 H 2 3 3 3 3 3 J 172 222 272 322 372 K 2023 25.3 302.3 352.3 402.3 Load offset 0nm 45.7 36.3 29.8 25.1 21.6 Load offset 100m 32.1 28.3 24.6 21.5 18.9 ctorque on rod tip (N=1) 3.2 2.8 2.5 2.1 1.9 <t< td=""><td>L 228 278 328 378 428 478 A 0 100 100 200 200 300 B 0 85 85 185 185 285 C 1 1 2 2 3 3 D 4 4 6 6 8 8 E 0 0 0 1 1 2 F 4 6 6 8 8 100 G 0 1 1 1 1 1 H 2 3 3 3 3 3 3 J 172 222 272 322 372 422 K 2023 25.23 302.3 35.3 402.3 452.3 Load offset 0nm 45.7 36.3 29.8 25.1 21.6 18.8 Load offset 100m 32.1 28.3 24.6</td><td>L 228 278 328 378 428 478 528 A 0 100 100 200 200 300 300 B 0 85 85 185 185 285 285 C 1 1 2 2 3 3 4 D 4 4 6 6 8 8 10 20 F 4 6 6 8 8 10 10 12 2 F 4 6 6 8 8 10 10 1</td></t<>	L 228 278 328 378 428 478 A 0 100 100 200 200 300 B 0 85 85 185 185 285 C 1 1 2 2 3 3 D 4 4 6 6 8 8 E 0 0 0 1 1 2 F 4 6 6 8 8 100 G 0 1 1 1 1 1 H 2 3 3 3 3 3 3 J 172 222 272 322 372 422 K 2023 25.23 302.3 35.3 402.3 452.3 Load offset 0nm 45.7 36.3 29.8 25.1 21.6 18.8 Load offset 100m 32.1 28.3 24.6	L 228 278 328 378 428 478 528 A 0 100 100 200 200 300 300 B 0 85 85 185 185 285 285 C 1 1 2 2 3 3 4 D 4 4 6 6 8 8 10 20 F 4 6 6 8 8 10 10 12 2 F 4 6 6 8 8 10 10 1

	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power		Reference page
Positioner type (High-output specification)	<u>ii</u>	PCON-CA-42PWAI-①-2-0		512 points			
Pulse train type (High-output specification)		PCON-CA-42PWAI-PL [®] -2-0	1	512 points	DC24V		→P. 69
Field network type (High-output specification)		PCON-CA-42PWAI0-0		768 points			
Solenoid valve multi-axis type (PIO specification)	1	MSEP	C: 8 (4 when high-output enabled)	3 points			→P. 77
Positioner multi-axis type (Field network specification)	H	MSEP	LC: 6 (3 when high-output enabled)	256 points		-7F.77	
Program control multi-axis safety category type		MSEL-PG-1-42PWAI-①-2-4	4	20000 points	Single-phase		→P. 87
Program control multi-axis safety category type (w/ network board)	2	MSEL-PG-1-42PWAI0-4	4	30000 points	AC 100V~230V		→P.87

Actuator Specifications														
Lead and Payload								Stroke and Max	imum Speed Values in brack	ets < > are for vertical use. (Unit: mm/s)				
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	<u> </u>	Maximum push force (N)	Stroke (mm)		Lead (mm)	Connected controller	70~520 (Every 50mm)				
	24	High-output enabled	20	3	182			103				24	High-output enabled	800 <600>
RCP5-RA7R-WA-56P-24-①-P3-②-③	24	High-output disabled	18	3	182			24	High-output disabled	600 <400>				
RCP5-RA7R-WA-56P-16-①-P3-②-③	16	High-output enabled	50	8	273			16	High-output enabled	560				
KCP5-KA7K-WA-56P-16-10-12-12-12	10	High-output disabled	40	5	2/3	70~520		16	High-output disabled	420				
RCP5-RA7R-WA-56P-8-①-P3-②-③	8	High-output enabled	60	18	547	(Every 50mm)		8	High-output enabled	420 <350>				
RCP3-RA7R-WA-30P-8-10-P3-12-13	0	High-output disabled	50	17.5	547			o	High-output disabled	210				
RCP5-RA7R-WA-56P-4-①-P3-②-③	4	High-output enabled	80	28	1094			4	High-output enabled	175				
KCP3-KA/K-WA-30P-4-U-P3-2-3	4	High-output disabled	55	26	1094			4	High-output disabled	140				
Legend: ① Stroke ② Cable length ③ Options	;													

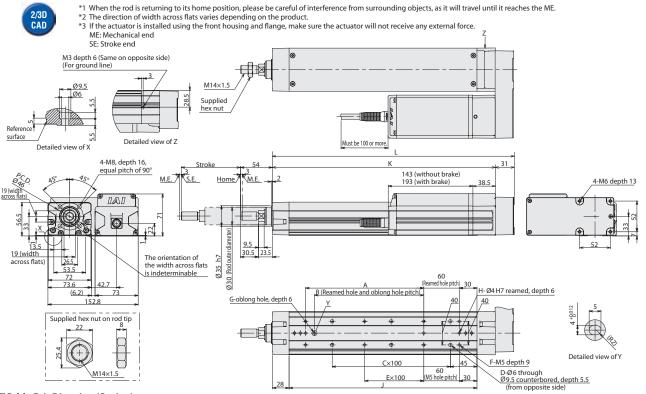

Cable Length	1							
Туре	Cable code							
Standard type	P (1m) S (3m) M (5m)							
		KO6 (6m) ~X10 (10)	m)					
Special length	X11 (11m)~X15 (15m)							
	X16 (16m)~X20 (20m)							
	[R01 (1m) ~R03 (3m	ı)					
		RO4 (4m) ~RO5 (5m	ı)					
Robot cable	[I	R06 (6m) ~R10 (10)	m)					
		R11 (11m)~R15 (15	m)					
		R16 (16m)~R20 (20	m)					

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Outside)	CIO	→P.11
Cable exit direction (Bottom)	CJB	→P.11
Flange (*1)	FL	→P.12
Tip adapter (Flange) (*1)	FFA	→P. 12
Tip adapter (Internal thread) (*1)	NFA	→P. 13
Tip adapter (Keyway) (*1)	KFA	→P. 13
Motor side-mounted to the left (Standard)	ML	→P.11
Motor side-mounted to the right	MR	→P. 11
Non-motor end specification	NM	→P.11

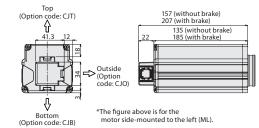
Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø12mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	Ø30mm Aluminum
Rod non-rotation precision (*2)	±0 deg
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) The values in brackets [] are for Lead 24.

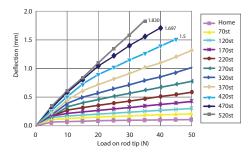
(*2) Rod's angular displacement in rotational direction with no applied load is shown.



Load at end of rod

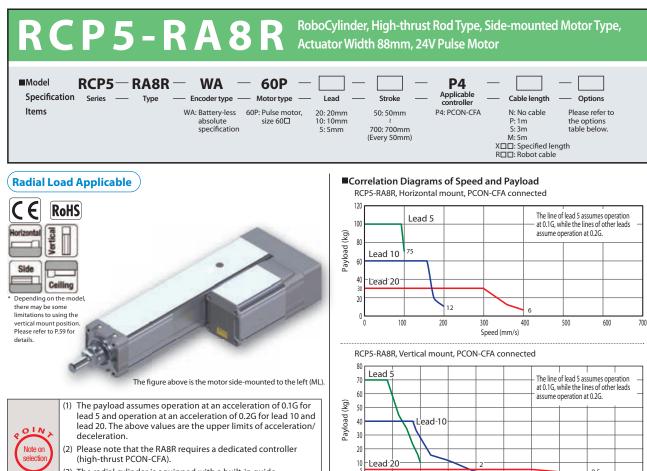


(*1) Depending on the stroke, some rod attachment options are not available. Also, when selecting the shorter strokes, please be careful of nearby objects. Some interference may occur. Please refer to P. 14.


CAD drawings can be downloaded from the v www.robocylinder.de

Cable Exit Direction (Option)

■Rod Deflection of RCP5-RA7R



Dimensions and Mass by Stroke

	Stroke	70	120	170	220	270	320	370	420	470	520
	L	258	308	358	408	458	508	558	608	658	708
	A	0	100	100	200	200	300	300	400	400	500
	В	0	85	85	185	185	285	285	385	385	485
	С	1	1	2	2	3	3	4	4	5	5
	D	4	4	6	6	8	8	10	10	12	12
	E	0	0	0	1	1	2	2	3	3	4
	F	4	6	6	8	8	10	10	12	12	14
	G	0	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3
	J	168	218	268	318	368	418	468	518	568	618
	К	227	277	327	377	427	477	527	577	627	677
Allowable sta	atic load on rod tip (N)	119.2	97.7	82.8	71.6	63.0	56.2	50.6	46.0	42.2	38.8
Allowable	Load offset 0mm	44.3	35.7	29.6	25.2	21.7	19.0	16.8	15.0	13.6	12.2
dynamic load on rod tip (N)		33.9	29.7	25.7	22.4	19.7	17.4	15.5	14.0	12.8	11.5
Allowable stati	c torque on rod tip (N•m)	12.1	10.0	8.5	7.4	6.5	5.9	5.3	4.9	4.5	4.1
Allowable dyna	mic torque on rod tip (N•m)	3.4	3.0	2.6	2.2	2.0	1.7	1.6	1.4	1.3	1.2
Mass (kg)	Without brake	4.0	4.3	4.6	4.9	5.2	5.5	5.8	6.1	6.3	6.6
iviass (Kg)	With brake	4.5	4.8	5.1	5.4	5.7	6.0	6.3	6.6	6.8	7.1

Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	Ű.	PCON-CA-56PWAI-①-2-0	5PWAI-①-2-0			
Pulse train type (High-output specification)		PCON-CA-56PWAI-PL -2-0	1	512 points	DC24V	→P. 69
Field network type (High-output specification)		PCON-CA-56PWAI0-0		768 points		
Solenoid valve multi-axis type (PIO specification)	in a	MSEP	C: 8 (4 when high-output enabled)	3 points		\D 77
Positioner multi-axis type (Field network specification)	HI	MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. 77
Program control multi-axis safety category type		MSEL-PG-1-56PWAI-①-2-4	4	20000 points	Single-phase	→P. 87
Program control multi-axis safety category type (w/ network board)		MSEL-PG-1-56PWAI0-4	4	30000 points	AC 100V~230V	77.07

кср5-ка7к 42

(3) The radial cylinder is equipped with a built-in guide. Please refer to the graphs shown in P. 65 and after for the allowable load mass.

Actuator Specifications															
Lead and Payload									Stroke and Maximum Speed						
Model number	Lead (mm)	Connected controller				Stroke (mm)		Lead (mm)	50 (mm)	100~450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)
RCP5-RA8R-WA-60P-20-①-P4-②-③	20	PCON-CFA	30	5	500			20	280	400	360	320	280	240	220
RCP5-RA8R-WA-60P-10-①-P4-②-③	10	PCON-CFA	60	40	1,000	50~700 (Every 50mm)		10	2	00	180	160	140	120	110
RCP5-RA8R-WA-60P-5-①-P4-②-③	5	PCON-CFA	100	70	2,000	Johnny		5	1	00	90	80	70	60	55
Legend: ① Stroke ② Cable length ③ Options	5														

Ó0

50

100

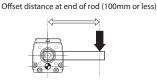
150

200

250

Speed (mm/s)

300


350

Cable Length								
Туре	Cable code							
Standard type	P (1m) S (3m) M (5m)							
Special length		<mark>K06</mark> (6m) ~X10 (10) K11 (11m) ~X15 (15) K16 (16m) ~X20 (20)	m)					
Robot cable		R01 (1m) ~R03 (3m R04 (4m) ~R05 (5m R06 (6m) ~R10 (100 R11 (11m)~R15 (15 R16 (16m)~R20 (20	m) m)					

Options

Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Outside)	CJO	→P.11
Cable exit direction (Bottom)	CJB	→P.11
Motor side-mounted to the left (Standard)	ML	→P. 11
Motor side-mounted to the right	MR	→P. 11
Flange	FL	→P. 12
Non-motor end specification	NM	→P. 11

Actuator Specifications						
ltem	Description					
Drive system	Ball screw Ø16mm, rolled C10					
Positioning repeatability	±0.02mm					
Lost motion	0.1mm or less					
Rod	Ø40mm Aluminum					
Rod non-rotation precision (*1)	±0 deg					
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65					
Rod tip overhang distance	100mm or less					
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)					
(*1) Rod's angular displacement in re	ptational direction with no applied load is shown.					

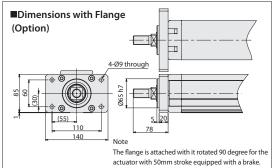
Load at end of rod

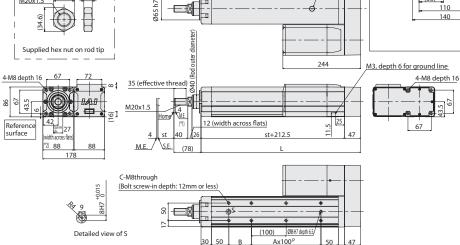
0.5

450

500

400

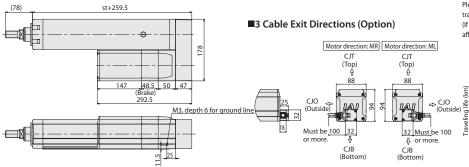

CAD drawings can be www.robocylinder.de


2/3D CAD

M20x1.5

30

*1 When the rod is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME. *2 The direction of width across flats varies depending on the product. *3 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force. ME: Mechanical end SE: Stroke end



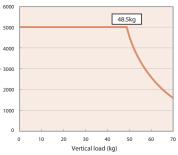
Reference surface 17.5

Grease nipple

Dimensions with Brake (Option)

Allo

A dyn on Allo Allo


Μ

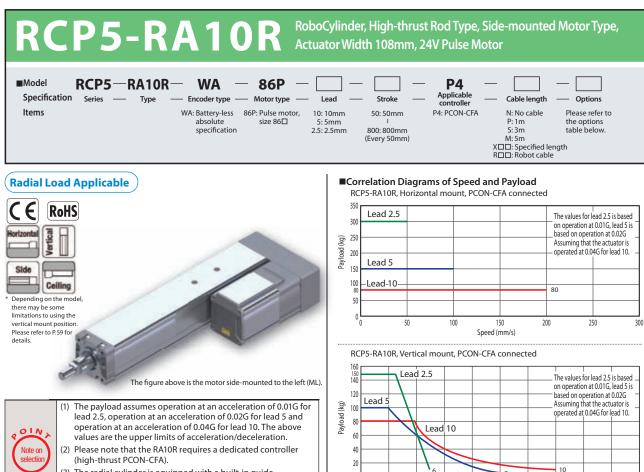
If an actuator with lead 5 is installed vertically, the service life of the actuator varies significantly depending on its payload. Please refer to the correlation diagram of vertical load and

Note


traveling life shown below. (If the actuator is installed horizontally, its service life is not

affected by the payload.)

■Rod Deflection of RCP5-RA8R


(The graph below shows the measurements of how much a horizontally installed **Dimensions and Mass by Stroke** rod would deflect when a load is applied to the end of the rod. The measured deflection includes the deflection due to the weight of the rod.)

	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700
	L	309.5	359.5	409.5	459.5	509.5	559.5	609.5	659.5	709.5	759.5	809.5	859.5	909.5	959.5
	A	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	В	115	65	115	65	115	65	115	65	115	65	115	65	115	65
	С	4	6	6	8	8	10	10	12	12	14	14	16	16	18
	D	115	165	215	265	315	365	415	465	515	565	615	665	715	765
lowable sta	atic load on rod tip (N)	180	150.3	128.9	112.7	99.9	89.7	81.3	74.3	68.3	63.1	58.6	54.6	51.1	47.9
Allowable namic load	Load offset 0mm	73.6	60.3	51.0	44.1	38.7	34.3	30.7	27.7	25.2	23.0	21.1	19.4	17.8	16.5
n rod tip (N)		57.0	48.6	42.5	37.8	33.8	30.5	27.6	25.2	23.1	21.2	19.5	18.1	16.7	15.5
lowable stati	c torque on rod tip (N•m)	18.1	15.2	13.0	11.4	10.2	9.2	8.4	7.7	7.1	6.6	6.1	5.8	5.4	5.1
lowable dyna	mic torque on rod tip (N•m)	5.7	4.9	4.3	3.8	3.4	3.0	2.8	2.5	2.3	2.1	2.0	1.8	1.7	1.5
Mass (kg)	Without brake	8.6	9.0	9.4	9.8	10.3	10.7	11.1	11.6	12.0	12.4	12.9	13.3	13.7	14.1
viass (Kg)	With brake	9.6	10.0	10.4	10.9	11.3	11.7	12.2	12.6	13.0	13.4	13.9	14.3	14.7	15.2

Applicable Controllers								
The RCPS series actuators can be operated by the controllers indicated below. Please select the type depending on your intended use.								
Name	External view	Model number	Maximum number of positioning points	Input power		Reference page		
Positioner type		PCON-CFA-60PWAI-NP-2-0 PCON-CFA-60PWAI-PN-2-0	512 points					
Pulse-train type		PCON-CFA-60PWAI-PLN-2-0 PCON-CFA-60PWAI-PLP-2-0	-	DC24V		→P. 69		
Field network type		PCON-CFA-60PWAI-①-0-0	768 points					

*① Field network specification code (DV, CC, PR, CN, PRT, EC, EP)

 (3) The radial cylinder is equipped with a built-in guide.
 Please refer to the graphs shown in P. 65 and after for the allowable load mass.

Actuator Specifications																			
■Lead and Payload	ILead and Payload								d Ma	ximu	m Spee	d Valu	ues in br	rackets «	< > are f	or vertic	al use.	(Unit:	mm/s
Model number	Lead (mm)	Connected controller	Maximum Horizontal (kg)		Maximum push force (N)	Stroke (mm)	Lead (mm)	50 (mm)	100 (mm)		200~400 (Every 50mm)						700 (mm)		
RCP5-RA10R-WA-86P-10-①-P4-②-③	10	PCON-CFA	80	80	1,500		10 117 167 <140>						180 <140>	160 <140>	140	120			
RCP5-RA10R-WA-86P-5-①-P4-②-③	5	PCON-CFA	150	100	3,000	50~800 (Every 50mm)	5	83			100		90	80	70	60	55	50	45
RCP5-RA10R-WA-86P-2.5-①-P4-②-③	2.5	PCON-CFA	300	150	6,000	Jonnin)	2.5				50					45	40	35	30

40

60

80

100

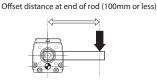
Speed (mm/s)

120

140

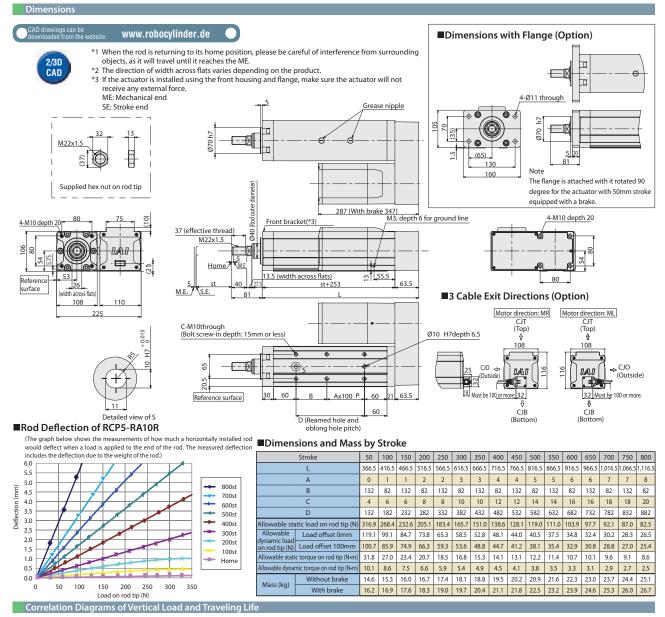
160 180 200

0 20

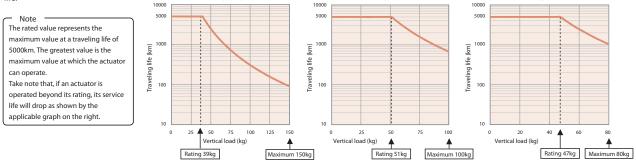

Legend: ① Stroke ② Cable length ③ Options

Cable Length	1							
Туре	Cable code							
Standard type	P (1m) S (3m) M (5m)							
		X06 (6m) ~X10 (10	m)					
Special length	X11 (11m)~X15 (15m)							
	X16 (16m)~X20 (20m)							
		R01 (1m) ~R03 (3m	ו)					
		R04 (4m) ~R05 (5m	ו)					
Robot cable		R06 (6m) ~R10 (10	m)					
		R11 (11m)~R15 (15	m)					
		R16 (16m)~R20 (20	m)					

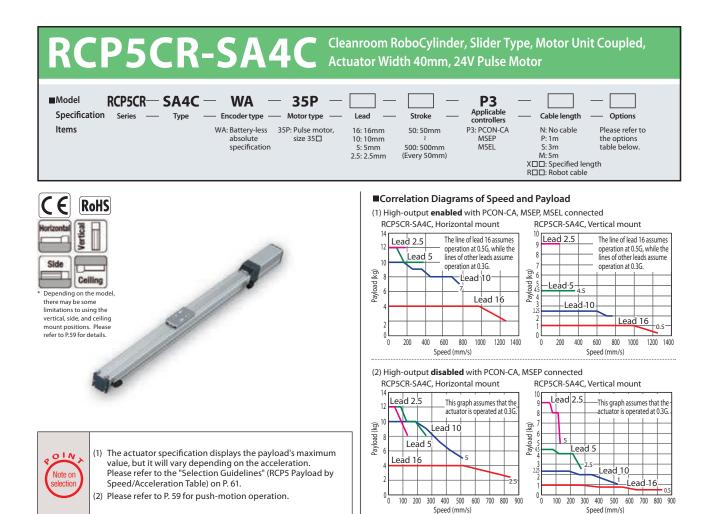
Options


Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Outside)	CJO	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Motor side-mounted to the left (Standard)	ML	→P. 11
Motor side-mounted to the right	MR	→P. 11
Flange	FL	→P. 12
Non-motor end specification	NM	→P.11

Actuator Specifications						
ltem	Description					
Drive system	Ball screw Ø20mm (Lead 2.5/10mm), Ø16mm (Lead 5mm), rolled C10					
Positioning repeatability	±0.02mm					
Lost motion	0.1mm or less					
Rod	Ø40mm Aluminum					
Rod non-rotation precision (*1)	±0 deg					
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 65					
Rod tip overhang distance	100mm or less					
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)					
(*1) Rod's angular displacement in re	otational direction with no applied load is shown.					



Load at end of rod



• Since the RCP5-RA10R has a greater maximum thrust than other types, its service life varies significantly depending on the payload and push force applied when the actuator is installed vertically. When selecting an appropriate type from the correlation diagram of speed and payload or correlation diagram of push force and current-limiting value, check its traveling life on the correlation diagram of payload and service life as well as on the correlation diagram of push force and service Lead 2.5 life. Lead 5 Lead 10

Applicable Controllers The RCP5 series actuators can be operated by the controllers indicated below. Please select the type depending on your intended use.								
Name	External view	Model number	Maximum number of positioning points	Input power		Reference pag		
Positioner type		PCON-CFA-86PWAI-NP-2-0 PCON-CFA-86PWAI-PN-2-0	512 points					
Pulse-train type		PCON-CFA-86PWAI-PLN-2-0 PCON-CFA-86PWAI-PLP-2-0	-	DC24V		→P. 69		
Field network type		PCON-CFA-86PWAI-①-0-0	768 points					

Actuator Specifications							Strok	ke, Max
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Stroke (mm)		Lead (mm)	Cor
RCP5CR-SA4C-WA-35P-16-①-P3-②-③	16	High-output enabled 4		1		1	16	High-out
RCP5CR-SA4C-WA-35P-10-U-P3-U-3	10	High-output disabled	1		50~500		16	High-out
RCP5CR-SA4C-WA-35P-10-①-P3-②-③	10	High-output enabled	10	2.25			10	High-out
RCP5CR-5A4C-WA-55P-10-10-12-12-12-12	10	High-output disabled						High-out
RCP5CR-SA4C-WA-35P-5-①-P3-②-③	5	High-output enabled	12	4.5	(Every 50mm)		_	High-out
RCP3CR-3A4C-WA-33P-3-U-P3-U-B	5	High-output disabled	12	4.5			5	High-out
RCP5CR-SA4C-WA-35P-2.5-①-P3-②-③	2.5	High-output enabled	12	9			2.5	High-out
NCF3CN-3A4C-WA-33F-2.3-10-P3-12-10	2.5	High-output disabled	12	9			2.5	High-out

■Strok	ount	(Unit: mm/s				
Lead (mm)	Connected controller	50~400 (Every 50mm)	450 (mm)	500 (mm)	Suction amount (N [®] /min)	
16	High-output enabled	1260	<i>co</i>			
10	High-output disabled		60			
10	High-output enabled	785	675	555	40	
10	High-output disabled		525		40	
_	High-output enabled	390	330	275	20	
5	5 High-output disabled 260			20		
2.5	High-output enabled 195 165 135		10			
2.5	High-output disabled		130		10	

Legend: ① Stroke ② Cable length ③ Options

Cable Length	1
Туре	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
	R16 (16m)~R20 (20m)

Options		
Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Right)	CJR	→P. 11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CLB	→P. 11
Non-motor end specification	NM	→P. 11
Vacuum joint on opposite side	VR	→P. 11

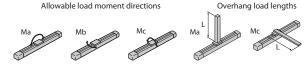
 Item
 Description

 Drive system
 Ball screw Ø8mm, rolled C10

 Positioning repeatability
 ±0.02mm

 Lost motion
 0.1mm or less

 Base
 Material: Aluminum with white alumite treatment


 Dynamic allowable moment (*1)
 Ma: 4.98N·m, Mb: 7.11N·m, Mc: 9.68N·m

 Static allowable moment
 Ma: 8.6N·m, Mb: 7.22N·m, Mc: 16.7N·m

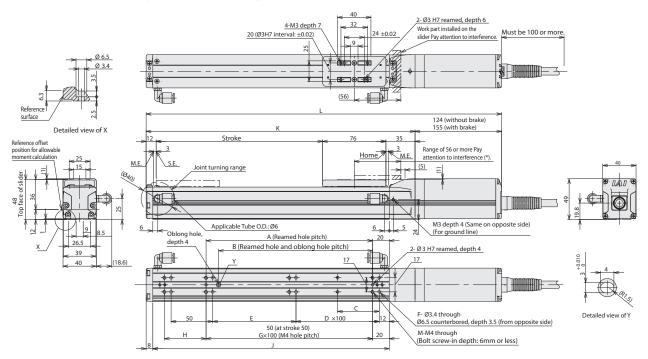
 Cleanliness
 ISO class 4 (US FED STD class 10)

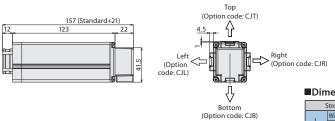
 Ambient operating temperature, humidity
 0 to 40°C, 85% RH or less (Non-condensing)

(*1) Assumes a standard rated life of 5000km. • Reference for overhang load lengths / Ma: 120mm or less, Mb, Mc: 120mm or less

(Note)

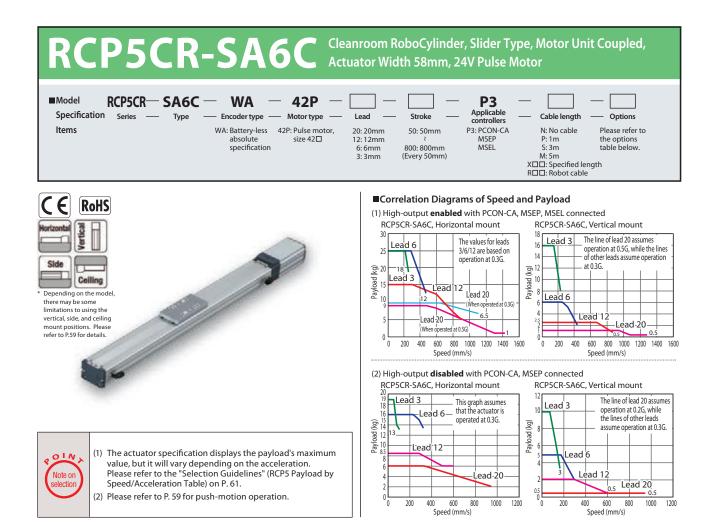
The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.


www.robocylinder.de


CAD drawings can be downloaded from the website.

> *1 When the slider is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME. ME: Mechanical end

SE: Stroke end *2 There is no pipe joint for RCP5-SA4C Slider Roller Type (SR).


Cable Exit Direction (Option)

Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500
	Without brake	297	347	397	447	497	547	597	647	697	747
L	With brake	328	378	428	478	528	578	628	678	728	778
	A	50	100	100	200	200	300	300	400	400	500
	В	35	85	85	185	185	285	285	385	385	485
	С	25	50	50	50	50	50	50	50	50	50
	D	0	0	1	1	2	2	3	3	4	4
	E	50	100	50	100	50	100	50	100	50	100
	F	8	8	10	10	12	12	14	14	16	16
	G	0	1	1	2	2	3	3	4	4	5
	Н	50	50	100	50	100	50	100	50	100	50
	J	134	184	234	284	334	384	434	484	534	584
	К	173	223	273	323	373	423	473	523	573	623
	М	6	6	6	8	8	10	10	12	12	14
Mass	Without brake	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.7	1.8
(kg)	With brake	1.2	1.3	1.4	1.5	1.5	1.6	1.7	1.8	1.9	2.0

Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	- M	PCON-CA-35PWAI-①-2-0		512 mainte		
Pulse train type (High-output specification)		PCON-CA-35PWAI-PL®-2-0	1	512 points		→P. 69
ield network type (High-output specification)		PCON-CA-35PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	un	MSEP	C: 8 (4 when high-output enabled)	3 points		→P. 77
Positioner multi-axis type (Field network specification)	iiii	MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. //
Program control multi-axis safety category type	1	MSEL-PG-1-35PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	-	MSEL-PG-1-35PWAI0-4	-	Soudo points	100V~230V	→r. o/

Actuator Specifications	Actuator Specifications																	
■Lead and Payload						St	rol	ke, Max.	Speed	and	Sucti	on A	mou	unt				(Unit: mm/s)
Model number	Lead (mm)	Connected controller		n payload Vertical (kg)	Stroke (mm)	Le (m	uu	Connected controller	50~400 (Every 50mm)	450 (mm)	500 (mm)	550 (mm)	600 (mm)	650 (mm)	700 (mm)	750 (mm)		Suction amount (Nℓ/min)
RCP5CR-SA6C-WA-42P-20-①-P3-②-③	20	High-output enabled	10	1		Γ,		High-output enabled	1,440 <1280>		1,335 <1280>	1,130	970	840	735	650	575	100
her 5ch-5A0C-WA-42r-20-12-F5-12-12		High-output disabled	utput disabled 6 0.5		20		High-output disabled	t 960					840	735	650	575	100	
RCP5CR-SA6C-WA-42P-12-①-P3-②-③	12	High-output enabled	15	2.5	50~800 (Every		12	High-output enabled	900	885	735	620	535	460	405	355	315	70
NCr 3Ch-3AUC-WA-421-12-12-12-12-12-12-12-12-12-12-12-12-1		High-output disabled	8.5	2			2	High-output disabled		600			535	460	405	355	315	70
RCP5CR-SA6C-WA-42P-6-1-P3-2-3	6	High-output enabled	25	6	50mm)			High-output enabled	450 435		435 365 305		265	230	200	175	155	30
ner 5ch-5A0c-WA-42r-0-W-F5-&-&		High-output disabled	16	5				High-output disabled	it 300				265	230	200	175	155	50
RCP5CR-SA6C-WA-42P-3-①-P3-②-③	3	High-output enabled	25	16				High-output enabled	225 215 180		180	150	130	115	100	85	75	15
ner sen-snoe-wn-42r-s-@-Ps-@-@		High-output disabled	19	10		³	,	High-output disabled		150			130	115	100	85	75	15
Legend: ① Stroke ② Cable length ③ Options	;												Val	ues in	brack	ets < >	are fo	or vertical use.

Cable Length	
Туре	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
	R16 (16m)~R20 (20m)

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P.11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CLB	→P. 11
Non-motor end specification	NM	→P.11
Vacuum joint on opposite side	VR	→P.11

Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø10mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*2)	Ma: 11.6N•m, Mb: 16.6N•m, Mc: 24.6N•m
Static allowable moment	Ma: 38.3N•m, Mb: 54.7N•m, Mc: 81N•m
Cleanliness	ISO class 4 (US FED STD class 10)
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) The values in brackets [] are for Lead 20.

Mb

A.

(*2) Assumes a standard rated life of 5000km.

• Reference for overhang load lengths / Ma: 150mm or less, Mb, Mc: 150mm or less

<u>O</u>

Allowable load moment directions

Overhang load lengths

Ç.

(Note)

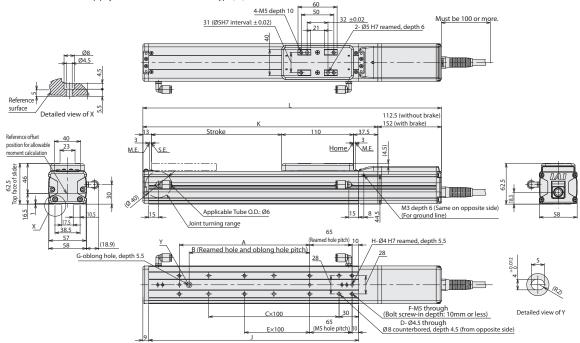
Ma

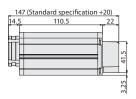
()

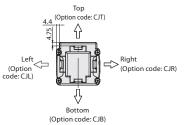
The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

Ma

C.

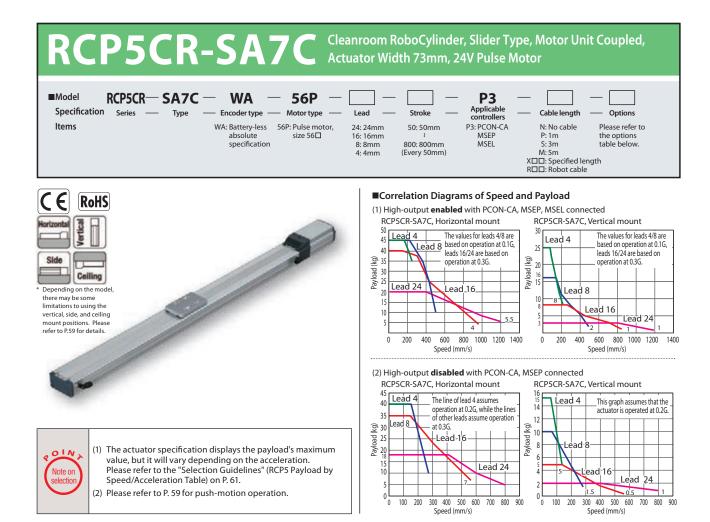

www.robocylinder.de


CAD drawings can be


*1 When the slider is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME. ME: Mechanical end

SE: Stroke end *2 There is no pipe joint for RCP5-SA6C Slider Roller Type (SR).

Cable Exit Direction (Option)



Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	Without brake	323	373	423	473	523	573	623	673	723	773	823	873	923	973	1023	1073
L	With brake	362.5	412.5	462.5	512.5	562.5	612.5	662.5	712.5	762.5	812.5	862.5	912.5	962.5	1012.5	1062.5	1112.5
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	В	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	C	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	F	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	J	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
	К	210.5	260.5	310.5	360.5	410.5	460.5	510.5	560.5	610.5	660.5	710.5	760.5	810.5	860.5	910.5	960.5
Mass	Without brake	1.7	1.8	2.0	2.2	2.4	2.5	2.7	2.9	3.1	3.2	3.4	3.6	3.8	3.9	4.1	4.3
(kg)	With brake	1.9	2.0	2.2	2.4	2.6	2.7	2.9	3.1	3.3	3.4	3.6	3.8	4.0	4.1	4.3	4.5

The RCP5 series actuators can be operated by the controllers indicated by	pelow. Please	e select the type depending on you	r intended use.				
	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page	
Positioner type (High-output specification)	- M	PCON-CA-42PWAI-①-2-0		512 mainte			
Pulse train type (High-output specification)		PCON-CA-42PWAI-PL®-2-0	1	512 points		→P. 69	
Field network type (High-output specification)		PCON-CA-42PWAI0-0		768 points	DC24V		
Solenoid valve multi-axis type (PIO specification)		MSEP	C: 8 (4 when high-output enabled)	3 points] [
Positioner multi-axis type (Field network specification)	111	MSEP-℗-℗-~℗-0-0	LC: 6 (3 when high-output enabled)	256 points		→P. 77	
Program control multi-axis safety category type		MSEL-PG-1-42PWAI-①-2-4	4	30000 points	Single-phase AC	ND 07	
Program control multi-axis safety category type (w/ network board)		MSEL-PG-1-42PWAI0-4	4	S0000 points	100V~230V	→P. 87	

*(II) Field network specification code *(II) C or LC *(II) N specification) or P (PNP specificat *The high output enabled operation is only available when the "High-output setting specs" is selected in the MSEP-C/LC.

Actuator Specifications															
■Lead and Payload ■Stroke, Max. Speed and Suction Amount (U									(Uni	it: mm/s					
Model number	Lead (mm)	Connected controller	Maximun Horizontal (kg)	n payload Vertical (kg)	Stroke (mm)		Lead (mm)	Connected controller	50~550 (Every 50mm)	600 (mm)	650 (mm)	700 (mm)	750 (mm)	800 (mm)	Suction amount (N&/min)
RCP5CR-SA7C-WA-56P-24-①-P3-②-③	24	High-output enabled	20	3			24	High-output enabled	d 1200 1145 1000			885	785	90	
ncr3cn-3A/C-WA-30r-24-1-P3-12-13	24	High-output disabled	18	2			24	High-output disabled	008 E					785	90
	16	High-output enabled	40	8			16	High-output enabled	980 <840>	875 <840>	755	660	585	520	70
RCP5CR-SA7C-WA-56P-16-①-P3-②-③	10	High-output disabled	35	5	50~800		16	High-output disabled			560			520	70
RCP5CR-SA7C-WA-56P-8-①-P3-②-③	8	High-output enabled	45	16	(Every 50mm)			High-output enabled	490	430	375	325	290	255	
RCP3CR-3A/C-WA-30P-8-1-P3-2-3	ð	High-output disabled	40	10			8	High-output disabled	280					255	40
RCP5CR-SA7C-WA-56P-4-①-P3-②-③		High-output enabled	45	25				High-output enabled	245 <210>	215 <210>	185	160	140	125	
RCP3CR-3A/C-WA-30P-4-1-P3-2-3	4	High-output disabled	40	15			4	High-output disabled	140				125	30	
Legend: ① Stroke ② Cable length ③ Options									·	V	alues in	bracket	s < > are	for ver	tical use

Cable Length	1
Туре	Cable code
	P (1m)
Standard type	S (3m)
<i>,</i> ,	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
	R16 (16m)~R20 (20m)

Options		
Name	Option code	Reference page
Brake	В	→P.11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Right)	CJR	→P.11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CLB	→P. 11
Non-motor end specification	NM	→P. 11
Vacuum joint on opposite side	VR	→P. 11

Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø12mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*2)	Ma: 11.6N•m, Mb: 16.6N•m, Mc: 33.7N•m
Static allowable moment	Ma: 51.2N•m, Mb: 73.1N•m, Mc: 148N•m
Cleanliness	ISO class 4 (US FED STD class 10)
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) The values in brackets [] are for Lead 24.

Mb

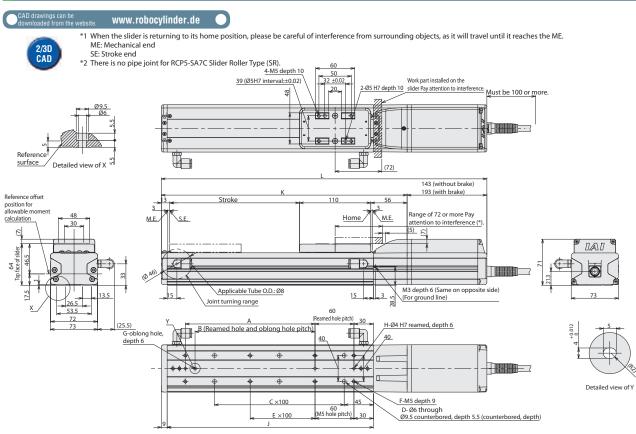
(*2) Assumes a standard rated life of 5000km.
 Reference for overhang load lengths / Ma: 230mm or less, Mb, Mc: 230mm or less

()

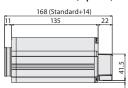
Allowable load moment directions

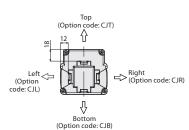
Overhang load lengths

(Note)


Ma

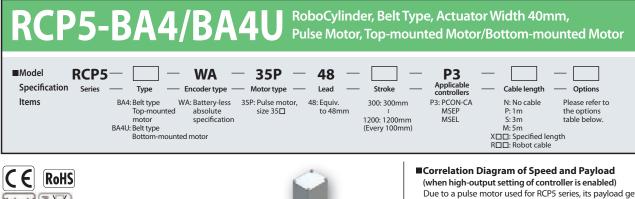
()


The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.


Ma

A

Cable Exit Direction (Option)



Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
	Without brake	372	422	472	522	572	622	672	722	772	822	872	922	972	1022	1072	1122
	With brake	422	472	522	572	622	672	722	772	822	872	922	972	1022	1072	1122	1172
	A	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
	В	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
	С	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
	D	4	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	0	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7
	F	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
	G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Н	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	J	168	218	268	318	368	418	468	518	568	618	668	718	768	818	868	918
	К	229	279	329	379	429	479	529	579	629	679	729	779	829	879	929	979
Mass	Without brake	3.0	3.2	3.5	3.7	3.9	4.1	4.4	4.6	4.8	5.0	5.3	5.5	5.7	5.9	6.1	6.4
(kg)	With brake	3.5	3.7	4.0	4.2	4.4	4.6	4.9	5.1	5.3	5.5	5.8	6.0	6.2	6.4	6.6	6.9

		e select the type depending on you				
Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	Ű.	PCON-CA-56PWAI-①-2-0		512 points		
Pulse train type (High-output specification)		PCON-CA-56PWAI-PL-2-0	1	512 points		→P. 69
Field network type (High-output specification)		PCON-CA-56PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	line	MSEP	C: 8 (4 when high-output enabled)	3 points		→P. 77
Positioner multi-axis type (Field network specification)		MSEP	LC: 6 (3 when high-output enabled)	256 points		→P.77
Program control multi-axis safety category type		MSEL-PG-1-56PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	a	MSEL-PG-1-56PWAI0-4	4	Source points	100V~230V	77.87

The figure above is the top-mounted motor type

- (1) Please set the operation speed at 150mm/s or higher for the belt type as it may cause vibration or noise when used at lower speed.
- (2) Due to a pulse motor used for RCP5 series, its payload gets lower when operated at higher speed. Please refer to the correlation diagram of speed and payload on this page or to the selection table on P. 65 to make sure that the required payload will be met at the operation speed you desire.
- (3) The payload assumes operation at an acceleration of 0.5G. 0.5G is the upper limit of the acceleration.
- (4) Push-motion operation cannot be performed.

Cable code

M (5m) X06 (6m) ~X10 (10m)

X11 (11m)~X15 (15m) X16 (16m)~X20 (20m) R01 (1m) ~R03 (3m) R04 (4m) ~R05 (5m)

R06 (6m) ~**R10** (10m) **R11** (11m)~**R15** (15m)

R16 (16m)~R20 (20m)

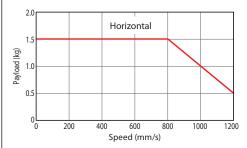
P (1m) S (3m)

Side

Depending on the m there may be some

P.59 for details.

Note or


Cable Length Type

Standard type

Special length

Robot cable

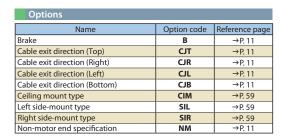
Due to a pulse motor used for RCP5 series, its payload gets lower when operated at higher speed. Please refer to this diagram below to make sure that the required payload will be met at the operation speed you desire.

Warnings

- This model cannot be installed in the vertical mount position.
- Horizontal and ceiling mount specifications cannot be installed in the side position. Similarly, side mount specification cannot be installed in a horizontal or ceiling mount position.
- The maximum stroke for the side and ceiling mount positions is 1000mm.

Actuator Specifications										
■Lead and Payload					∎St	roke and	(Unit: mm/s)			
Model number	Motor	Lead	Maximum payload	Stroke (mm)	Lea	300	400	500	600	700~1200
Model Humber	attached side	(mm)	Horizontal (kg)	Sticke (min)	(mm	(mm)	(mm)	(mm)	(mm)	(Every 100mm)
RCP5-BA4-WA-35P-48-①-P3-②-③	Тор	Equiv.	1.5	300~1200	Equi	v. 890	1040	1120	1160	1200
RCP5-BA4U-WA-35P-48-①-P3-②-③	Bottom	to 48mm	1.5	(Every 100mm)	48mi		1040	1120	1100	1200
Legend: ① Stroke ② Cable length ③ Options		^	·*			The	values ap	ply to hig	h-output s	setting of controller.

Actuator Specifications	
ltem	Description
Drive system	Timing belt
Positioning repeatability	±0.08mm
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*1)	Ma: 6.14N•m, Mb: 6.14N•m, Mc: 11.9N•m
Static allowable moment	Ma: 16N•m, Mb: 16N•m, Mc: 31.2N•m
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)


(*1) Assumes a standard rated life of 5000km. Reference for overhang load lengths / Ma: 120mm or less, Mb, Mc: 120mm or less

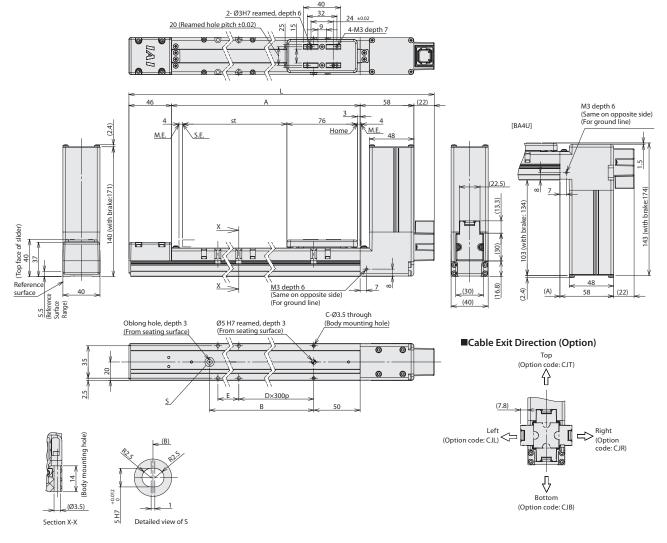
Allowable load moment directions

Mb

O.

Overhang load lengths Mc

Ma


The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

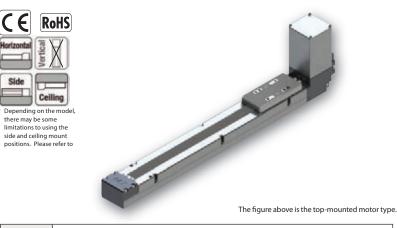
Ma

CAD drawings can be downloaded from the website. www.robocylinder.de

2/3D CAD

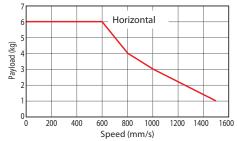
*1 When the slider is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME. ME: Mechanical end SE: Stroke end *The way to attach the actuator is to fix with screws from the top only.

Dimensions and Mass by Stroke


5	Stroke	300	400	500	600	700	800	900	1000	1100	1200
	L	517	617	717	817	917	1017	1117	1217	1317	1417
	A	391	491	591	691	791	891	991	1091	1191	1291
	В	300	400	500	600	700	800	900	1000	1100	1200
	С	4	6	6	6	8	8	8	10	10	10
	D	0	1	1	1	2	2	2	3	3	3
	E	291	91	191	291	91	191	291	91	191	291
Mass	Without brake	1.7	1.8	2	2.1	2.3	2.4	2.5	2.7	2.8	2.9
(kg)	With brake	1.9	2	2.2	2.3	2.5	2.6	2.7	2.9	3	3.1

*The weights shown in the table above are for BA4. The weight increases by 0.2kg for BA4U.

The RCP5 series actuators can be operated by the controllers indicated by	pelow. Please	e select the type depending on you	r intended use.			
Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	<u>i</u>	PCON-CA-35PWAI-①-2-0		512 mainte		
Pulse train type (High-output specification)		PCON-CA-35PWAI-PL [®] -2-0	1	512 points		→P. 69
Field network type (High-output specification)		PCON-CA-35PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	line	MSEP	C: 8 (4 when high-output enabled)	3 points		→P. 77
Positioner multi-axis type (Field network specification)	HH:	MSEP	LC: 6 (3 when high-output enabled)	256 points		→r.//
Program control multi-axis safety category type		MSEL-PG-1-35PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	• •	MSEL-PG-1-35PWAI0-4	4	S0000 points	100V~230V	→P. 87


* The high output enabled operation is only available when the "High-output setting specs" is selected in the MSEP-C/LC.

RCP5-BA6/BA6U RoboCylinder, Belt Type, Actuator Width 58mm, Pulse Motor, Top-mounted Motor/Bottom-mounted Motor Model RCP5-WA 42P -48 **P3** Applicable controllers Specification - Motor type Series Type - Encoder type Lead Stroke Cable length Options WA: Battery-less 42P: Pulse motor, 48: Equiv. d absolute size 42□ to 48r P3: PCON-CA MSEP N: No cable P: 1m S: 3m Items BA6: Belt type 300: 300mm Please refer to Top-mounted to 48mm the options motor specification 2200: 2200mm MSEL table below. M: 5m XIII: Specified length RIII: Robot cable BA6U: Belt type Bottom-mounted motor (Every 100mm)

Correlation Diagram of Speed and Payload (when high-output setting of controller is enabled)

Due to a pulse motor used for RCP5 series, its payload gets lower when operated at higher speed. Please refer to this diagram below to make sure that the required payload will be met at the operation speed you desire.

Please set the operation speed at 100mm/s or higher for the belt type as it may cause vibration or noise when used at lower speed.

- (2) Due to a pulse motor used for RCP5 series, its payload gets lower when operated at higher speed. Please refer to the correlation diagram of speed and payload on this page or to the selection table on P. 65 to make sure that the required payload will be met at the operation speed you desire.
- (3) The payload assumes operation at an acceleration of 0.5G. 0.5G is the upper limit of the acceleration.
- (4) Push-motion operation cannot be performed.

Warnings

- This model cannot be installed in the vertical mount position.
- Horizontal and ceiling mount specifications cannot be installed in the side position. Similarly, side mount specification cannot be installed in a horizontal or ceiling mount position.
- The maximum stroke for the side and ceiling mount positions is 1000mm.

Actuator Specifications															
■Lead and Payload	Lead and Payload								Stroke and Maximum Speed						
Model number	Motor	Lead	Maximum payload	Stroke (mm)	Lead	300	400	500	600	700	800	900~2,200			
Modernamber	attached side	(mm)	Horizontal (kg)	Stroke (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Every 100mm)			
RCP5-BA6-WA-42P-48-①-P3-②-③	Тор	Equiv. to	6	300~2200	Equiv.	890	1070	1220	1340	1400	1440	1500			
RCP5-BA6U-WA-42P-48-①-P3-②-③	Bottom	48mm	0	(Every 100mm)	to 48mm		1070	1220	1340	1400	1440	1500			
Legend: D Stroke D Cable length 3 Options			· · · · ·			Tł	ne value	es apply	to hig	n-outpu	ut settin	ng of controller.			

Legend: ① Stroke ② Cable length ③ Options

OIN

Note or

Cable Length	1
Туре	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
	R16 (16m)~R20 (20m)

Options		
Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Right)	CJR	→P. 11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Ceiling mount type	CIM	→P. 59
Left side-mount type	SIL	→P. 59
Right side-mount type	SIR	→P. 59
Non-motor end specification	NM	→P. 11

Actuator Specifications	
ltem	Description
Drive system	Timing belt
Positioning repeatability	±0.08mm
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*1)	Ma: 15.7N•m, Mb: 15.7N•m, Mc: 31.6N•m
Static allowable moment	Ma: 44.5N•m, Mb: 44.5N•m, Mc: 89.2N•m
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) Assumes a standard rated life of 5000km.
 Reference for overhang load lengths / Ma: 150mm or less, Mb, Mc: 150mm or less

Mo

O.

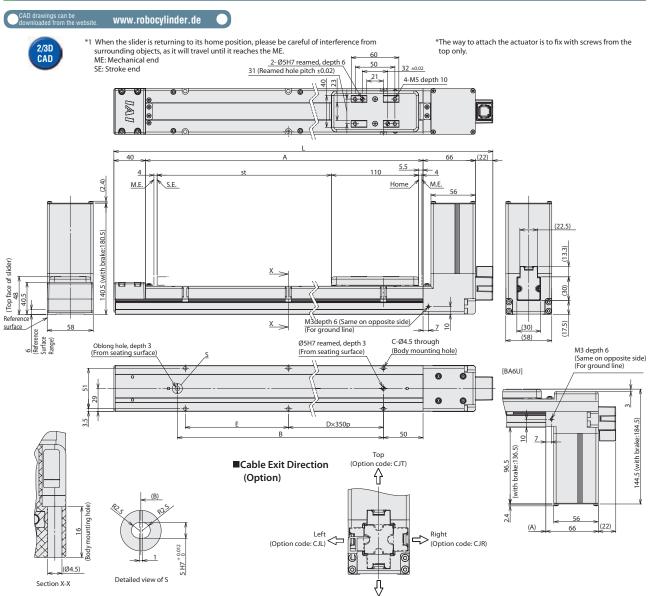
Allowable load moment directions

Mb

5-E

Overhang load lengths

(Note)

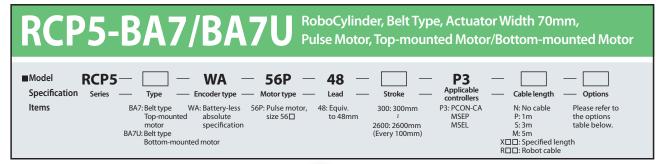

Ma

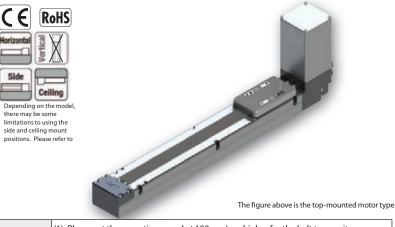
Ĩ

The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

Ma

55 кср5-ваб/ваби

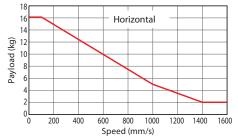

Dimensions and Mass by Stroke


	nensions	anai	mass k	,, 500	, inc																
	Stroke	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
	L	558	658	758	858	958	1058	1158	1258	1358	1458	1558	1658	1758	1858	1958	2058	2158	2258	2358	2458
	A	430	530	630	730	830	930	1030	1130	1230	1330	1430	1530	1630	1730	1830	1930	2030	2130	2230	2330
	В	340	440	540	640	740	840	940	1040	1140	1240	1340	1440	1540	1640	1740	1840	1940	2040	2140	2240
	С	4	6	6	6	6	8	8	8	10	10	10	10	12	12	12	14	14	14	14	16
	D	0	1	1	1	1	2	2	2	3	3	3	3	4	4	4	5	5	5	5	6
	E	330	80	180	280	380	130	230	330	80	180	280	380	130	230	330	80	180	280	380	130
Mass	Without brake	2.2	2.4	2.7	2.9	3.1	3.3	3.5	3.7	3.9	4.2	4.4	4.6	4.8	5	5.2	5.4	5.6	5.9	6.1	6.3
(kg)	With brake	2.6	2.8	3.1	3.3	3.5	3.7	3.9	4.1	4.3	4.6	4.8	5	5.2	5.4	5.6	5.8	6	6.3	6.5	6.7

Bottom (Option code: CJB)

*The weights shown in the table above are for BA6. The weight increases by 0.2kg for BA6U.

The RCP5 series actuators can be operated by the controllers indicated b	elow. Please	e select the type depending on you	r intended use.			
Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	Ĩ	PCON-CA-42PWAI-①-2-0	1	512 mainte		
Pulse train type (High-output specification)		PCON-CA-42PWAI-PL℗-2-0		512 points		→P. 69
Field network type (High-output specification)		PCON-CA-42PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)		MSEP	C: 8 (4 when high-output enabled)	3 points		
Positioner multi-axis type (Field network specification)	iiii .	MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. 77
Program control multi-axis safety category type		MSEL-PG-1-42PWAI-①-2-4	4	30000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	2 k	MSEL-PG-1-42PWAI0-4	4	S0000 points	100V~230V	→r. o/



- (1) Please set the operation speed at 100mm/s or higher for the belt type as it may cause vibration or noise when used at lower speed.
- (2) Due to a pulse motor used for RCP5 series, its payload gets lower when operated at higher speed. Please refer to the correlation diagram of speed and payload on this page or to the selection table on P. 65 to make sure that the required payload will be met at the operation speed you desire.
- (3) The payload assumes operation at an acceleration of 0.5G. 0.5G is the upper limit of the acceleration.
- (4) Push-motion operation cannot be performed.

Correlation Diagram of Speed and Payload

(when high-output setting of controller is enabled) Due to a pulse motor used for RCP5 series, its payload gets lower when operated at higher speed. Please refer to this diagram below to make sure that the required payload will be met at the operation speed you desire.

Warnings

- This model cannot be installed in the vertical mount position.
- · Horizontal and ceiling mount specifications cannot be installed in the side position. Similarly, side mount specification cannot be installed in a horizontal or ceiling mount position.
- The maximum stroke for the side and ceiling mount positions is 1000mm.

Actuator Specifications													
Lead and Payload						Stroke and Maximum Speed (Unit: mm/							
Model number	Motor	Lead	Maximum payload	Stroke (mm)	Lea		400	500	600	700		900	1000~2600 (Every
Model humber	attached side	(mm)	Horizontal (kg)	SLIOKE (mm)	(mm) (mm)	n) (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	100mm)
RCP5-BA7-WA-56P-48-①-P3-②-③	Тор	Equiv. to	16	300~2600	Equi	<i>.</i> 890	1070	1220	1340	1450	1520	1550	1600
RCP5-BA7U-WA-56P-48-①-P3-②-③	Bottom	48mm	10	(Every 100mm)	to 48m		1070	1220	1340	1450	1520	1550	1600
Legend: 1 Stroke 2 Cable length 3 Options						1	he valu	les app	oly to h	igh-ou	tput se	etting c	of controller.

седени. Ш эктоке (2)

014

Note or

Cable Length	1
Туре	Cable code
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m)~X15 (15m)
	X16 (16m)~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m)~R15 (15m)
	R16 (16m)~R20 (20m)

Options		
Name	Option code	Reference page
Brake	В	→P. 11
Cable exit direction (Top)	CJT	→P. 11
Cable exit direction (Right)	CJR	→P. 11
Cable exit direction (Left)	CJL	→P. 11
Cable exit direction (Bottom)	CJB	→P. 11
Ceiling mount type	CIM	→P. 59
Left side-mount type	SIL	→P. 59
Right side-mount type	SIR	→P. 59
Non-motor end specification	NM	→P.11

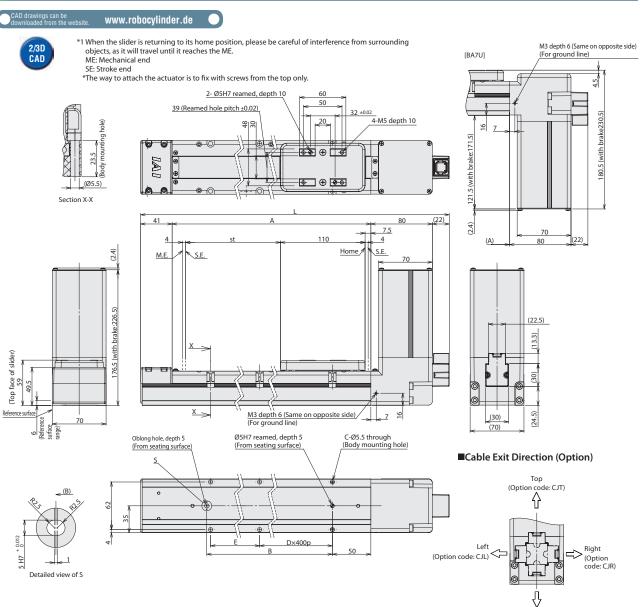
Actuator Specifications	
ltem	Description
Drive system	Timing belt
Positioning repeatability	±0.08mm
Lost motion	0.1mm or less
Base	Material: Aluminum with white alumite treatment
Dynamic allowable moment (*1)	Ma: 33.2N•m, Mb: 33.2N•m, Mc: 72.3N•m
Static allowable moment	Ma: 80.7N•m, Mb: 80.7N•m, Mc: 175N•m
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) Assumes a standard rated life of 5000km. • Reference for overhang load lengths / Ma: 180mm or less, Mb, Mc: 180mm or less

Mo

Allowable load moment directions

Mb


Overhang load lengths

(Note)

Ma

The operational life will vary depending on operation and installation conditions. Please refer to the RC General Catalog for details on operational life, allowable moment direction, and overhang load length.

Ma

Dimensions and Mass by Stroke

_																									
	Stroke	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600
	L	578	678	778	878	978	1078	1178	1278	1378	1478	1578	1678	1778	1878	1978	2078	2178	2278	2378	2478	2578	2678	2778	2878
	A	435	535	635	735	835	935	1035	1135	1235	1335	1435	1535	1635	1735	1835	1935	2035	2135	2235	2335	2435	2535	2635	2735
	В	340	440	540	640	740	840	940	1040	1140	1240	1340	1440	1540	1640	1740	1840	1940	2040	2140	2240	2340	2440	2540	2640
	С	4	4	6	6	6	6	8	8	8	8	10	10	10	10	12	12	12	12	14	14	14	14	16	16
	D	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6	6
	E	335	435	135	235	335	435	135	235	335	435	135	235	335	435	135	235	335	435	135	235	335	435	135	235
Mass	Without brake	3.8	4.1	4.4	4.8	5.1	5.4	5.8	6.1	6.5	6.8	7.1	7.5	7.8	8.1	8.5	8.8	9.1	9.5	9.8	10.2	10.5	10.8	11.2	11.5
(kg)	With brake	4.4	4.7	5	5.4	5.7	6	6.4	6.7	7.1	7.4	7.7	8.1	8.4	8.7	9.1	9.4	9.7	10.1	10.4	10.8	11.1	11.4	11.8	12.1

*The weights shown in the table above are for BA7. The weight increases by 0.2kg for BA7U.

Name	External view	Model number	Max. number of controlled axes	Maximum number of positioning points	Input power	Reference page
Positioner type (High-output specification)	- M	PCON-CA-56PWAI-①-2-0		512		
Pulse train type (High-output specification)		PCON-CA-56PWAI-PL-2-0	1	512 points		→P. 69
Field network type (High-output specification)		PCON-CA-56PWAI0-0		768 points	DC24V	
Solenoid valve multi-axis type (PIO specification)	1	MSEP	C: 8 (4 when high-output enabled)	3 points		.0.77
Positioner multi-axis type (Field network specification)	illi	MSEP	LC: 6 (3 when high-output enabled)	256 points		→P. 77
Program control multi-axis safety category type		MSEL-PG-1-56PWAI-①-2-4	4	20000 points	Single-phase AC	→P. 87
Program control multi-axis safety category type (w/ network board)	-	MSEL-PG-1-56PWAI-@-0-4	4	30000 points	AC 100V~230V	→P.87

Bottom

(Option code: CJB)

Warnings/Selections __ RCP5 series

Warnings When Installing the Rod Actuators

When installing the front bracket or flange (optional), please be careful that the actuator does not experience any external force. (External force may cause malfunctions or damaged parts) If the actuator will experience external force or is being used in conjunction with a Cartesian robot etc., please use the mounting holes on the base of the actuator to secure it into place.

Even in cases when external force will not be applied, to secure the actuator in place when installed horizontally using a flange or sidemounted motor specification, please use the bracket mounting holes to create a support base as shown in the diagram on the right.

About the Mounting Positions

• While installation in the side and ceiling mount positions are available, this may cause slack or misalignment in the stainless steel sheet.

Continuing to use it this way could cause the stainless steel sheet to break. Please inspect it daily and adjust the sheet if any slack or misalignment is found.

• When installing the motor straight-type vertically, please set the motor on the top if possible.

While installing the motor on the bottom will not cause problems in normal operation, long periods of no activity may cause the grease to separate, flow into the motor unit, and cause problems in rare occasions.

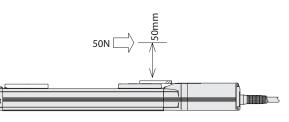
Belt Type Mounting Positions

Horizontal and ceiling mount specifications cannot be installed in the side position. Similarly, side mount specification cannot be installed in a horizontal or ceiling mount position.

Tilted or vertical mount installations will cause operational failure, so please do not install it in these positions.

The maximum stroke for the side and ceiling mount positions is 1000mm.

Please do not attempt to use a product with a stroke of more than 1000mm in the side or ceiling mount positions.

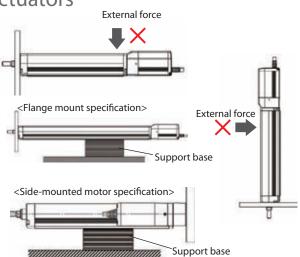

Selection Guideline (Correlation Diagram of Push Force and Current-limiting Value)

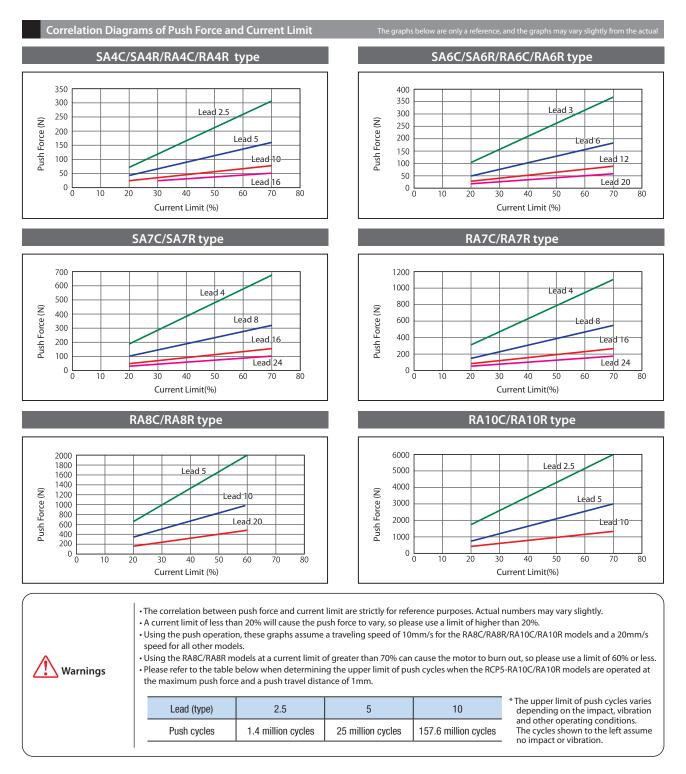
In the push operation, the push force can be changed by changing the current force of the controller to be between 20%-70% (for SA4[¬] and RA4[¬], start from 30%). The maximum push force will vary depending on the model, so please refer to the graphs on the following pages and select one based on the needed push force for your intended use.

When using the push operation with the slider actuator, please limit the push current in order that the reactive moment caused by the push force does not exceed the dynamic allowable moment (Ma, Mb) specified in the catalog. Please refer to the figure on the right which shows the guide moment's active positions for help with calculating the moment. This can be done by considering the offset of the push force application position. Please note that if excessive force which exceeds the dynamic allowable moment is applied, it may damage the guide and shorten its operational life. Please keep this in mind and select a push current that is safely within its limits.

SA4C: h=36mm SA6C: h=46mm SA6C: h=46.5mm

Working Point of Guide Moment




Calculation example:

If push-motion operation is performed with an RCP5-SA7C by applying 50N at the position shown to the right, the moment received by the guide, or Ma, is calculated as $(46.5+50) \times 50 = 4825$ (N•mm)

 $= 4.825 (N \cdot m).$

Since the dynamic allowable moment of the SA7C is Ma=10 (N·m), since $10 \times 0.8 = 8 > 4.825$, this is an acceptable selection. Also, should an Mb moment occur due to the push operation, calculate the moment from the overhang and ensure that it is within range of the dynamic allowable moment.

■ Warnings for RCP5-RA10C/RA10R Models Using the Push Operation

The push force is limited on certain RA10C/RA10R models due to its relationship with the buckling load of the ball screw. (Refer to the table below.)

						(11)				
Items	Stroke 550mm or less	Stroke 600mm or less	Stroke 650mm or less	Stroke 700mm or less	Stroke 750mm or less	Stroke 800mm or less				
Lead 10		As shown in the push force graph								
Lead 5	As shown in the graph	2900	2500	2200	2000	1800				
Lead 2.5		As shown i		5900	5400					

(N)

Selection Guideline (Tables of RCP5 Payload by Speed/Acceleration)

When operating the RCP5, increasing the speed/acceleration reduces the travel time, but it also causes the payload to drop. The tables below provide the maximum payload in each acceleration/deceleration for different models. Find a model that satisfies the operational conditions you desire.

High-output enabled operation is only available if "high-output setting" is selected for the MSEP-C/LC controller.

High-output Setting Enabled

RCP5 Series	Slider Type Mot	or Coupled S	pecification *The	same tables ap	ply when the RCP5CF	is used.
RCP5-SA4C Lead 16	RCP5-SA4C	Lead 10	RCP5-SA4C	Lead 5	RCP5-SA4C	Lead 2.5
Orientation Horizontal Vertical	Orientation Horizontal	Vertical	Orientation Horizontal	Vertical	Orientation Horizontal	Vertical
Speed Acceleration (G)	Speed Accelerat			ation (G)	Speed Accelera	ition (G)
(mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5
0 4 4 4 4 4 1 1 1	0 10 10 10 8	8 2.25 2.25 2.25	0 12 12 12 10	10 4.5 4.5 4.5	0 12 12 12 12	12 9 9 9
140 4 4 4 4 1 1 1	85 10 10 10 8	8 2.25 2.25 2.25	40 12 12 12 10	10 4.5 4.5 4.5	20 12 12 12 12	12 9 9 9
280 4 4 4 4 1 1 1 420 4 4 4 4 1 1 1	175 10 10 10 8 260 9 9 9 8	8 2.25 2.25 2.25 8 2.25 2.25 2.25	85 12 12 12 10 130 11 11 11 10	10 4.5 4.5 4.5 10 4.5 4.5 4.5	40 12 12 12 12 65 12 12 12 12	12 9 9 9 12 9 9 9
420 4 4 4 4 4 1 1 1 560 4 4 4 4 4 1 1 1	350 9 9 9 8	8 2.25 2.25 2.25	175 10 10 10 10	10 4.5 4.5 4.5	85 12 12 12 12 12 85 12 12 12 12	12 9 9 9
700 4 4 4 4 4 1 1 1	435 8 8 8 8	8 2.25 2.25 2.25	215 10 10 10 10	10 4.5 4.5 4.5	105 12 12 12 12	12 9 9 9
840 4 4 4 3.5 1 1	525 8 8 8 7	7 2.25 2.25 2.25	260 10 10 10 10	10 4.5 4.5 4.5	130 12 12 12 12	12 9 9 9
980 4 4 3.5 3 1 1	610 8 8 7 6	5 2.25 2.25 2.25	305 10 10 10 10	10 4.5 4.5 4.5	150 12 12 12 12	12 9 9 9
1120 4 3 2 1.5 1 0.75		3 2 2	350 10 10 10 10	10 4.5 4.5 4.5	175 12 12 12 12	12 9 9 9
1260 2 1.5 1 0.5	785 7 4 3	3 2 1.5	390 10 10 10 10	10 4.5 4.5 4.5	195 12 12 12 12	12 9 9 9
RCP5-SA6C Lead 20	RCP5-SA6C	Lead 12	RCP5-SA6C	Lead 6	RCP5-SA6C	Lead 3
Orientation Horizontal Vertical	Orientation Horizontal	Vertical	Orientation Horizontal	Vertical	Orientation Horizontal	Vertical
Speed Acceleration (G)	Speed Accelerat	tion (G)		ation (G)	Speed Accelera	tion (G)
(mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5
0 10 10 9 7 6 1 1 1		10 2.5 2.5 2.5	0 25 25 20 16	14 6 6 6	0 25 25 25 25	25 16 16 16
160 10 10 9 7 6 1 1 1		10 2.5 2.5 2.5	50 25 25 20 16	14 6 6 6	25 25 25 25 25	25 16 16 16
320 10 10 9 7 6 1 1 1	200 15 15 12.5 11	10 2.5 2.5 2.5	100 25 25 20 16	14 6 6 6	50 25 25 25 25	25 16 16 16
480 10 10 9 7 6 1 1 1 640 10 10 8 6 5 1 1 1		10 2.5 2.5 2.5 8.5 2.5 2.5 2.5	150 25 25 20 16 200 25 25 20 16	14 6 6 6 14 6 6 6	75 25 25 25 25 100 25 25 25 25	25 16 16 16 25 16 16 16
640 10 10 8 6 5 1 1 1 800 10 9 6.5 4.5 3 1 1 1		6.5 2.5 2.5 2.5	200 25 25 20 16 250 25 25 20 16	14 6 6 5.5	125 25 25 25 25 25	25 16 16 16
960 8 5 3.5 2 1 1	600 15 12 9 6	4 2.5 2.5 2.5	300 25 25 20 15	11 6 5.5 5	150 25 25 25 25 25	22.5 16 14 13
1120 6.5 3 2 1.5 0.5 0.5		2.5 2.5 2.5 2	350 25 20 14 12	9 6 4.5 4	175 25 25 25 20	19 13 12 11
1280 1 1 1 0.5	800 10 7 5 2	1 2 1.5 1	400 25 16 10 8	6.5 4.5 3.5 3	200 25 25 20 18	16 11 10 9
1440 1 0.5	900 5 3 1	1 0.5 0.5	450 18 12 6 5	2.5 3.5 2 2	225 25 18 16 15	12 9 8
RCP5-SA7C Lead 24	RCP5-SA7C	Lead 16	RCP5-SA7C	Lead 8	RCP5-SA7C	Lead 4
Orientation Horizontal Vertical	Orientation Horizontal	Vertical	Orientation Horizontal	Vertical	Orientation Horizontal	Vertical
Speed Acceleration (G)	Speed Accelerat	ion (G)	Speed Accelera	ation (G)	Speed Accelera	tion (G)
(mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5	(mm/s) 0.1 0.3 0.5 0.7	1 0.1 0.3 0.5
0 20 20 18 16 14 3 3 3		27 8 8 8	0 45 45 40	40 16 16 16	0 45 45 45 40	40 25 25 25
200 20 20 18 16 14 3 3 3		27 8 8 8	70 45 45 45 40	40 16 16 16	35 45 45 40	40 25 25 25
400 20 20 18 16 14 3 3 3		24 8 8 8	140 45 45 40 38	35 16 16 16	70 45 45 40	40 25 25 25
600 20 16 15 10 9 3 3 3 200 16 17 10 7 4 3 5		10 6 5 4.5	210 45 40 35 30	24 11 10 9.5	105 45 45 45 40	35 22 20 19
800 16 12 10 7 4 3 2.5 1000 8 4.5 4 2 2 1.5	560 25 20 15 10 700 20 15 10 5	6 5 4 3 3 4 3 2	280 40 30 25 20 350 35 20 9 4	15 9 8 7 7 5 4	140 45 45 35 30 175 45 30 18	25 16 14 12 11 9 7.5
1000 8 4.5 4 2 2 1.5 1200 5.5 2 2 1 1 1		3 4 3 2 2 1	350 35 20 9 4 420 25 7	7 5 4	175 45 30 18 210 40 8	8 7.5
	980 4	2 1	420 25 7	2	245 35	•
					213 35	

RCP5 Series	Rod Type Motor Coupled Sp	pecification	
$\begin{tabular}{ c c c c c } \hline RCP5-RA4C & Lead 16 \\ \hline \hline \\ \hline $	Lead 10 Orientation Vertical Speed 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 0 15 15 13 12 2.5 2.5 2.5 0 15 15 13 12 2.5 2.5 2.5 175 15 13 13 12 2.5 2.5 2.5 260 15 13 13 12 2.5 2.5 2.5 380 15 15 13 10 2.5 2.5 2.5 252 15 13 11 9 2.5 2.5 2.5 380 15 13 11 9 2.5 2.5 2.5 525 14 14 10 8 7 2.5 2.5 610 9 7 5 4 2.5 2.5 2.5 700 6	RCP5-RA4C Lead 5 Orinitation Vertical Speed National System 0 28 25 22 20 20 5 5 0 28 25 22 20 20 5 5 5 40 28 25 22 20 20 5 5 5 130 28 25 22 20 20 5 5 5 175 28 25 22 20 20 5 5 5 206 28 25 22 20 20 5 5 5 215 28 25 22 20 18 5 5 5 260 28 25 22 20 18 5 5 5 305 28 22 20 18 16 5 4 4.5 </th <th>Lead 2.5 Direct Autom Colspan="2">Lead 2.5 Operad (Device Autom Colspan="2">Vertical Speed (Device Autom Colspan="2">Vertical Speed (Device Autom Colspan="2">Vertical Speed (Device Autom Colspan="2">Vertical Operad (Device Autom Colspan="2") Operad (Device Autom Colspan="2") O</th>	Lead 2.5 Direct Autom Colspan="2">Lead 2.5 Operad (Device Autom Colspan="2">Vertical Speed (Device Autom Colspan="2">Vertical Speed (Device Autom Colspan="2">Vertical Speed (Device Autom Colspan="2">Vertical Operad (Device Autom Colspan="2") Operad (Device Autom Colspan="2") O
Lead 20 Orientation Vertical Speed Acceleration (G) (mm/s) 0.0 0.3 0.5 0.7 1 0.1 0.3 0.5 0 6 6 6 5 5 1.5 1.5 1.5 160 6 6 6 5 3 1.5 1.5 1.5 320 6 6 6 5 3 1.5 1.5 1.5 480 6 6 5 3 1.5 1.5 1.5 800 4 3 – 1 1 1	RCP5-RA6C Lead 12 Vertical Vertical Vertical Vertical (mm/3) 0.5 Vertical (mm/3) 0.5 Vertical (mm/3) 0.5 Vertical (mm/3) 0.5 Vertical Vertical 2.5 18 16 12 4	RCP5-RA6C Lead 6 Orientation Horizontal Vertical Speed	RCP5-RA6C Lead3 Drieftation Vertical Speed Vertical Colspan="2">Vertical mm/w0 0 60 colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Vertical Total of 0 Colspan="2">Vertical Total of 0 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Vertical Total of 0 Colspan="2">Colspan="2" Total of 0 Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"
		400 30 18 10 6 5 4 3 3 450 25 8 3 2 2 1	200 60 35 30 20 14 8 5 4.5 225 40 16 16 10 6 5 5 4

0.1 0.3 0.5 0.7

14 5

 61
 63
 63
 63
 64
 64
 18
 18
 18

 60
 60
 50
 45
 40
 18
 18
 18

 60
 60
 50
 45
 40
 18
 18
 18

 60
 60
 50
 45
 40
 16
 16
 12

 60
 60
 40
 31
 26
 10
 10
 9

 60
 34
 22
 15
 11
 8
 7
 6

0.1 0.3 0.5

0.1 0.3 0.5 0.1

15

 80
 80
 80
 70
 65
 60
 28
 28
 28

 80
 80
 70
 65
 60
 28
 28
 28

 80
 80
 70
 65
 60
 28
 28
 28

 80
 80
 70
 65
 60
 28
 28
 28

 80
 80
 70
 65
 60
 28
 28
 28

 80
 80
 70
 65
 60
 28
 28
 28

 80
 80
 60
 50
 40
 22
 20
 18

 9
 80
 50
 30
 20
 15
 16
 12
 10

0.1 0.3 0.5

0.1 0.3 0.5

6 4.5 4 4 2 1

0.3 0.5 0.7

 25
 18
 14
 10

 10
 5
 3
 2

 50
 50
 40
 35
 30
 8
 8
 8

 50
 50
 40
 35
 30
 8
 8
 8

 50
 50
 40
 35
 30
 8
 8
 8

 50
 50
 40
 35
 30
 8
 8
 8

 50
 50
 40
 35
 20
 8
 7
 7

	Speed			Ac	celera	ation	(G)		
	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
	0	20	20	18	15	12	3	3	3
	200	20	20	18	15	12	3	3	3
	400	20	20	18	15	10	3	3	3
	600	15	14	9	7	4	3	3	2
	800		5	1	1				
ľ	D I								

High-output Setting Disabled

RCP5 Series

Slider Type Motor Coupled Specification *The same tables apply when the RCP5CR is used.

RCP5-SA4C

RCP5-	SA4	с				Lead	116				
Orientation		Ho	rizon	tal	V	ertica	I				
Speed		Acceleration (G)									
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.5				
0	4	4	4	3.5	1	1	1				
140	4	4	4	3.5	1	1	1				
280	4	4	4	3.5	1	1	1				
420	4	4	3.5	3	1	1	0.75				
560	4	3.5	3	2.5	1	0.75	0.75				
700	3.5	3	2.5	2	0.75	0.75	0.5				
840		2.5	2	1.5		0.5	0.5				
	\$46	с —			0.20	4 20					

RCP5-	RCP5-SA6C Lead 20											
Orientation		Horiz	ontal		Ver	tical						
Speed		Ac	celera	tion ((G)							
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2						
0	6	6	4	4	0.5	0.5						
160	6	6	4	4	0.5	0.5						
320	6	6	4	4	0.5	0.5						
480	5	5	3	3	0.5	0.5						
640	4	4	2	2	0.5	0.5						
800	3	3	1	1	0.5	0.5						
960	2	2	1	0.5		0.5						
RCP5-SA7C Lead 24												
Orientation		Horiz	ontal		Vert	tical						

Orientation		Horiz		Vertical		
Speed (mm/s)		Ac	(G)			
	0.2	0.3	0.5	0.7	0.1	0.2
0		18				2
200		18				2
400		18				2
600		10				1.5
800		5				1

RCP5-SA4C Lead10												
Orientation		Ho	rizon	tal	V	ertica	1					
Speed			Accel	leratio	on (G)							
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3					
0	10	10	9	8	2.25	2.25	2.25					
85	10	10	9	8	2.25	2.25	2.25					
175	10	10	9	8	2.25	2.25	2.25					
260	9	9	8	6	2	2	2					
350	8	7	6	5	2	2	2					
435	7	6	5	4	2	1.5	1.5					
525	6	5	4	3	1.5	1	1					
RCP5-		-				Lead						
Orientation		Horiz				ertica	ıl					
Speed			Accel	eratic	on (G)							

(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3	
0	8.5	8.5	7	6	2	2	2	
100	8.5	8.5	7	6	2	2	2	
200	8.5	8.5	7	6	2	2	2	
300	8.5	8.5	7	6	2	2	2	
400	8	7	4	3.5	2	2	1.5	
500	7	6	3	2	1.5	1.5	1	
600	6	6	2	1.5	1	1	0.5	
RCP5-SA7C Lead 16								
		-						
		Horiz			V	Lead		
Orientation Speed		Horiz		eratio	V			
Orientation		Horiz		eratio	V			
Orientation Speed		Horiz	Accel		V on (G)	'ertica	1	
Orientation Speed (mm/s)		Horiz	Accel		V on (G)	ertica	1	
Orientation Speed (mm/s)		Horiz 0.3 35	Accel		V on (G)	0.2	1	
Orientation Speed (mm/s) 0 140		0.3 35 35	Accel		V on (G)	0.2 5 5	1	

Horizonta

6 4 3 2 3 2.5 1.5 1

Acceleration (G) 0.2 0.3 0.5 0.7 0.1 0.2 0.3

Accelerati 0.2 0.3 0.5 0.7

 Horizontal
 Vertical

 Variable State
 Variable State

 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5

 15
 15
 13
 12
 12
 2.5
 2.5
 2.5

 15
 15
 13
 12
 12
 2.5
 2.5
 2.5

 12
 15
 13
 12
 12
 2.5
 2.5
 2.5

 12
 15
 13
 12
 12
 2.5
 2.5
 2.5

 12
 15
 13
 12
 12
 2.5
 2.5
 2.5

 12
 15
 13
 12
 12
 2.5
 2.5
 2.5

 12
 12
 12
 7
 7
 2.5
 2.5
 2.5

 12
 12
 7
 7
 7.25
 2.25
 2.5

 14
 8
 8
 4
 2
 2
 2

 6
 4
 3

350 435

525 610 700

Speed (mm/s)

0 25

100 25 200 25

300 20 400 10

400 10 500 5

RCP5-RA7C

Oriental

Speed

(mm/s

0
140 40 Ho

30 280 30 420 15

RCP5-RA6C

Rod Type Motor Coupled Specification

Lead 10

0.5 0.5

Lead 12

0.1 0.2 0.3

4

4

3

1

Lead 16

Vertical

5

1

Vertical

RCP5-RA4C

RCP5-RA6C

0 40 50 40 100 40

 100
 40

 150
 40

 200
 35

 250
 10

Speed (mm/s)

Но

Orientatio Speed (mm/s)

Orientation		Ho	rizon	tal	V	ertica				
Speed			Accel	eratic	on (G)					
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	12	12	12	10	4.5	4.5	4.5			
40	12	12	12	10	4.5	4.5	4.5			
85	12	12	12	10	4.5	4.5	4.5			
130	10	10	10	9	4	4	4			
175	10	10	9	8	4	4	4			
215	10	9	8	7	4	4	4			
260	9	8	7	6	3.5	3	2.5			
RCP5-SA6C Lead 6 Orientation Horizontal Vertical										
		110112		eratic	Vertical					
Speed (mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	16	15	13	12	5	5	5			
50	16	15	13	12	5	5	5			
100	16	15	13	12	5	5	5			
150	16		4.0	4.0	-					
	10	15	13	12	5	5	5			
200	16	15	13	12	5	5 4.5	5			
						-				
200	16	15	13	12	5	4.5	4			
200 250 300	16 15 13	15 12 12	13 10	12 7	5 4	4.5 4 2.5	4			
200 250	16 15 13 SA7	15 12 12 C	13 10	12 7	5 4 3	4.5 4 2.5	4 3 2 ad 8			

Lead 5

	Orientation		Horiz	ontal	Vertical			
	Speed (mm/s)							
		0.2	0.3	0.5	0.7	0.1	0.2	0.3
	0		40				10	
	70		40				10	
	140		40				7	
	210		25				4	
	280		10				1.5	

 Orientation
 Horizontal
 Vertical

 Speed
 - Acceleration (G)
 (mm/s)
 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5
 5
 5
 5
 40
 28
 25
 22
 20
 20
 5
 5
 5
 5
 130
 28
 25
 22
 20
 20
 5
 5
 5
 130
 28
 25
 22
 20
 20
 5
 5
 5
 13
 3
 3
 28
 25
 22
 20
 20
 5
 5
 5
 13
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

Acceleration (G) 0.2 0.3 0.5 0.7 0.1 0.2 0.3

Horizontal

RCP5-SA4C Lead 2.5										
Orientation		Ho	rizon	tal	V	ertica	l I			
Speed			Acce	leratio	on (G)					
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	12	12	12	12	9	9	9			
20	12	12	12	12	9	9	9			
40	12	12	12	12	9	9	9			
65	12	12	11	11	8	8	8			
85	12	11	10	10	8	8	8			
105	12	10	10	9	8	8	8			
130	12	10	9	8	5	5	5			
RCP5-SA6C Lead 3										
Orientation		Horiz				ertica	ıl			
Speed				eratic						
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	19	19	19	19	10	10	10			
25	19	19	19	19	10	10	10			
50	19	19	19	19	10	10	10			
75	19	19	19	19	10	10	10			
100	19	16	14	12	10	9	8			
125	18	14	11	10	7	6	6			
150	16	13	10	9	5	4.5	3			
RCP5-	SA7	-				Lea	nd 4			
Orientation		Horiz				ertica	d I			
Speed			Accel	eratic	on (G)					
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	40					15				
35	40					15				
70	40					15				
105	40					10				
140	40					5				

RCP5 Series

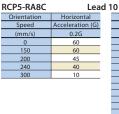
420 560 700

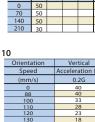
120 130

RCP5-RA4C Lead 16 RCP5-RA4C Orientation Speed Horizonta Vertical Orientation $\begin{tabular}{|c|c|c|c|c|c|c|} \hline Holizontal a \\ \hline Rcceleration (G) \\ \hline 0.1 & 0.3 & 0.5 & 0.7 & 1 & 0.1 & 0.3 & 0.5 \\ \hline 6 & 6 & 6 & 5 & 3.5 & 1.5 & 1.5 & 1.5 \\ \hline 6 & 6 & 6 & 5 & 3.5 & 1.5 & 1.5 & 1.5 \\ \hline 6 & 6 & 6 & 5 & 3.5 & 1.5 & 1.5 & 1.5 \\ \hline 6 & 6 & 6 & 5 & 3.5 & 1 & 1 & 1 \\ \hline 6 & 5.5 & 4.5 & 3.5 & 1 & 1 & 1 \\ \hline 5 & 4 & 3.5 & 2 & 1 & 1 & 1 \\ \hline \end{array}$ Speed (mm/s 0 140 280 260

1 1 1 1 0.75

RCP5-RA6C Lead 20										
Orientation		Horiz	ontal		Vert	tical				
Speed		Ac	celera	ation	(G)					
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2				
0		6				1.5				
160		6				1.5				
320		6			1.5					
480		4				1				
640		3				0.5				


5 4 3.5 2 4 2.5 1.5 1


RCP5	RCP5-RA7C Lead 24										
Orientation		Horiz	ontal		Vert	tical					
Speed		Ac	celera	ation	(G)						
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2					
0		18				3					
200		18				3					
400		10				2					
600		1									

(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2				
0		18				3				
200		18				3	_			
400		10				2				
600		1								
RCP5-	RA8	c			Lea	d 5				
RCP5- Orien		-	Hor	izonta			Orientation			
Orien		1	Hor Accele		al		Drientation Speed			
Orien Spe	tatior	1	Accele		al					
Orien Spe	tatior eed	1	Accele (ratior	al		Speed			

100	0
100	48
100	60
90	70
75	80
60	90
	100
	120
	150

RCP5-RA7C Lead 8											
Orientation		Horiz	zontal	V	ertica	al					
Speed			Acce	leratio	on (G)						
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3				
0	50					17.5					
70	50					17.5					
140	50					7					
210	30					2					
0											
Orient	ation		Ver	tical		(Drienta				

Vertical

0.02G

29

RCP5-RA4C Lead 2													
Orientation		Ho	rizon	tal		V	ertica						
Speed			Ac	celera	ition (G)							
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5					
0	36	36	36	32	30	10	10	10					
20	36	36	36	32	30	10	10	10					
40	36	36	36	32	30	10	10	10					
65	36	36	36	32	30	10	10	10					
85	36	36	36	32	30	10	10	10					
105	36	36	32	32	30	10	10	10					
130	36	32	32	30	30	9	9	8					
150	32	32	28	24	20	5	5	5					
175	28	18	16	12	12	2	2	2					

R	CP5-	RA6	С				Lea	ad 3
Ori	entation		Horiz	ontal		V	ertica	41
s	peed			Accel	eratio	on (G)		
(1	mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3
	0	40					20	
	25	40					20	
	50	40					16	
	75	40					12	
	100	40					9	
	125	40					5	

RCP5-	RA7	'C				Lea	ad 4
Orientation		Horiz	ontal		V	ertica	al
Speed			Accel	leratio	on (G)		
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3
0	55					26	
35	55					26	
70	55					15	
105	55					4	
140	35					2	

RA8C ntation

(mm/s)

0

240

270 300

360

420

450

480

510 540

600

Lead 5 Vertical

Lead 6

10

10 10

8

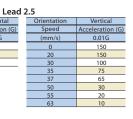
3

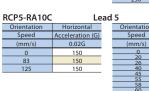
30

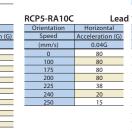
30 30

24 16

12


10


8 6


5

011 (G)	speed	Acceleration (G)
i	(mm/s)	0.2G
	0	5
	50	5
	100	5
	150	5
	180	5
	200	5
	240	5
	300	5
	360	5
	400	3
	420	2.5
	450	2

RCP5-RA10C Orientation Horizontal Acceleration (G) 0.01G Spe (mm/s) 300

10	
Orientation	Vertical
Speed	Acceleration (G)
(mm/s)	0.04G
0	80
34	80
37	69
45	58
53	50
75	35
105	20
120	15
140	10
152	8
167	6

Selection **__ RCP5**_{series}

High-output Setting Enabled

	RCI	25	Sei	ries	5				Slid	er٦	Гур	e S	ide	e-m	IOU	inte	ed N	lotor	· Sp	ec	ific	cati	on													
RCP5-	SA4I	R					Lea	d 16	RCP5-	SA4I	R					Lea	d 10	RCP	5-S/	44R	2					Le	nd 5	RCP5-	SA4	R				L	.ead	2.5
Orientation	1	Ho	orizon	tal		· ·	Vertic	al	Orientation		Ho	rizon	tal			Vertic	al	Orienta	ation		Ho	rizont	tal			Vertica	I	Orientation		Ho	orizon	tal		\	ertica	
Speed			A	cceler	ation ((G)			Speed			Ac	celera	ation	(G)			Spe	ed			Ac	celera	ation	(G)			Speed			A	celera	ation (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm	/s) (0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	4	4	4	4	4	1	1	1	0	10	10	10	8	8	2.25	2.25	2.25	0		12	12	12	10	10	4.5	4.5	4.5	0	12	12	12	12	12	9	9	9
140	4	4	4	4	4	1	1	1	85	10	10	10	8	8	2.25	2.25	2.25	40		12	12	12	10	10	4.5	4.5	4.5	20	12	12	12	12	12	9	9	9
280	4	4	4	4	4	1	1	1	175	10	10	10	8	8	2.25	2.25	2.25	85		12	12	12	10	10	4.5	4.5	4.5	40	12	12	12	12	12	9	9	9
420	4	4	4	4	4	1	1	1	260	9	9	9	8	8	2.25	2.25	2.25	130		11	11	11	10	10	4.5	4.5	4.5	65	12	12	12	12	12	9	9	9
560	4	4	4	4	4	1	1	1	350	9	9	9	8	8	2.25	2.25	2.25	17	_	10	10	10	10	10	4.5	4.5	4.5	85	12	12	12	12	12	9	9	9
700	4	4	4	4	4	1	1	1	435	8	8	8	8	8	2.25	2.25	2.25	21		10	10	10	10	10	4.5	4.5	4.5	105	12	12	12	12	12	9	9	9
840		4	4	3	3		1	1	525	8	8	8	7	7	2.25	2.25	2.25	260	_	10	10	10	10	10	4.5	4.5	4.5	130	12	12	12	12	12	9	9	9
980	-	4	4	2.5	2		0.75	1	610 700	8	8	4	5	4	2.25	2	2	30		10	10	10	10	10	4.5	4.5	4.5	150	12	12	12	12	10	9	9	9
1120		2.5	2.5	0.5	0.5		0.75	0.5	700		4	4	3	2	-	1.5	1	350	-	10	10 10	10 7	10 6	4	4	4 3.5	4	175	12	12	12	12 12	9	9	7	7
1200				0.5	0.5				765		4	2	2	1.5				- 291	0	10	10	/	0	4	4	5.5	2.5	195	12	12	12	12	9	9	/	
RCP5-	SA6I	R					Lea	d 20	RCP5-	SA6	۲					Lea	d 12	RCP	5-S/	46R	ł					Le	ad 6	RCP5-	SA6	R					Lea	ad 3
Orientation		Ho	prizon				Vertic	al	Orientation		Ho	rizon				Vertic	al	Orienta	ation		Ho	orizon				Vertica	1	Orientation		Ho	orizon				'ertica	1
Speed					ation (Speed				celera	ation				Spe				_	celera	ation				Speed					ation (<u> </u>		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm			0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	10	10	9	7	6	1	1	1	0	15	15	12.5	11	10	2.5	2.5	2.5	0			25	20	16	14	6	6	6	0	25	25	25	25	25	12	12	12
160	10	10	9	7	6	1	1	1	100	15	15	12.5	11	10	2.5	2.5	2.5	50		25	25	20	16	14	6	6	6	25	25	25	25	25	25	12	12	12
320	10	10	9	7	6	1	1	1	200	15	15	12.5	11	10	2.5	2.5	2.5	10	_		25	20	16	14	6	6	6	50	25	25	25	25	25	12	12	12
480	10	10	9	7	6	1	1	1	300	15	15	12.5	11	10	2.5	2.5	2.5	15		-	25	20	16	14	6	6	6	75	25	25	25	25 25	25 25	12	12	12
640 800	10 10	10 9	8 6.5	6 4.5	5	1	1	1	400 500	15 15	14 13	11 10	10 8	8.5 6.5	2.5	2.5	2.5	20		25	25	20	16 16	14 14	6	6	6 5.5	100	25	25 25	25	25	25	12	12	12 12
960	10	8	5	4.5	2	-	1	1	600	15	12	9	8	4	2.5	2.5	2.5	300		25	25	20	15	14	6	5.5	5.5	125	25	25	25	25	25	12	11	12
1120		6	3	2	1.5		0.5	0.5	700	12	12	8	4	2.5	2.5	2.5	1.5	350	_		20	14	12	9	5.5	4.5	4	175	25	25	25	20	19	11	9	8
1280		0	1	0.5	0.5		0.5	0.5	800	10	7	5	2	2.5	2.5	1	0.5	400		25	16	10	8	6.5	4.5	3.5	3	200	25	25	20	18	12	9	7	6
1200				0.5	0.5				900	10	4	2	1			<u> </u>	0.5	450	_		12	6	5	2.5	2.5	2	1.5	200	25	18	12	6	4	5	3	
									,00		· ·	-					<u> </u>				12	-		2.5	2.5	~			2.5	10	1.2					
RCP5-	SA7I	۲					Lea	d 24	RCP5-	SA7F	1					Lea	d 16	RCP	5-S/	A7R	ł					Le	ad 8	RCP5-	SA7I	R					Lea	ad 4
Orientation		Ho	prizon				Vertic	al	Orientation		Ho	rizon				Vertic	al	Orienta	ation		Ho	orizon				Vertica	1	Orientation		Ho	orizon				'ertica	1
Speed				cceler	ation (Speed				celera	ation				Spe				_	celera	ation				Speed					ation (<u> </u>		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm	/s) (0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	20	20	18	16	14	3	3	3	0	40	40	35	28	27	8	8	8	0		45	45	45	40	40	16	16	16	0	45	45	45	40	40	25	25	25
200	20	20	18	16	14	3	3	3	140	40	40	35	28	27	8	8	8	70		45	45	45	40	40	16	16	16	35	45	45	45	40	40	25	25	25
400	20	20	18	16	14	3	3	3	280	40	38	35	25	24	8	8	8	14	_	45	45	40	38	35	16	16	16	70	45	45	45	40	40	25	25	25
600	20	16	15	10	9	3	3	3	420	35	25	20	15	10	6	5	4.5	210		45	40	35	30	24	11	10	9.5	105	45	45	45	40	35	22	20	19
800	16	12	10	6	4		3	2.5	560	25	20	15	10	6	5	4	3	28	_	40	30	25	20	15	9	8	7	140	45	45	35	30	25	16	14	12
1000	L	8	4.5	2	1		1	1	700	20	15	8	5	3	3	2	1.5	350			20	9	4		7	5	4	175	45	30	18			11	7	5
									840		6	2						420	_	25 13	/				5	1		210	40					4		
																		490		13					<u> </u>											

Rod Type Side-mounted Motor Specification

RCP5-	RA4	R					Lea	d 16	RCP5-	RA4	R					Lea	d 10	F	RCP5-I	RA4	R					Le	ad 5	RCP5	RA4	R				ſ	Lead	12.5
Orientation		Н	orizon	ntal			Vertic	al	Orientation		H	orizor	ıtal			Vertic	al		Orientation		Ho	orizon	tal		1	/ertica	ıl	Orientation		He	orizon	tal			Vertica	al
Speed			A	cceler	ation	(G)			Speed			A	cceler	ation	(G)				Speed			A	celer	ation (G)			Speed			A	cceler	ation	(G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	5	5	4.5	3	2.5	1	1	1	0	12	12	10	10	8	2.5	2.5	2.5		0	25	25	22	20	18	5	5	5	0	40	40	40	35	30	10	10	10
140	5	5	4.5	3	2.5	1	1	1	85	12	12	10	10	8	2.5	2.5	2.5	1	40	25	25	22	20	18	5	5	5	20	40	40	40	35	30	10	10	10
280	5	5	4.5	3	2	1	1	1	175	12	12	10	10	6	2.5	2.5	2.5		85	25	25	22	20	18	5	5	5	40	40	40	40	35	30	10	10	10
420	5	5	4.5	3	2	1	1	1	260	12	12	10	10	5	2.5	2.5	2.5	1	130	25	25	22	20	18	5	5	5	65	40	40	40	35	30	10	10	10
560		5	4.5	2.5	2	1	1	1	350	12	12	10	8	5	2.5	2.5	2.5		175	25	25	22	20	18	5	5	5	85	40	40	40	35	30	10	10	10
700		4.5	3.5	2	1.5		1	1	435	12	10	8	6	4	2.5	2.5	2.5		215	25	25	22	18	16	5	5	5	105	40	40	35	35	30	10	10	10
840		3	2.5	1	0.5		0.5	0.5	525	12	8	6	3	2	2.5	2.5	2		260	25	22	20	16	12	5	5	5	130	40	40	35	30	30	10	10	8
									610		5	2				2	1.5		305	22	20	16	12	8	5	4	4	150	40	35	35	30	30	8	8	7
																			350	20	16	10	8	6	3.5	3	3	175	40	35	35	30	25	7.5	7	6
RCP5-	RA6	R					Lea	d 20	RCP5-	RA6	R					Lea	d 12	F	RCP5-	RA6	R					Le	ad 6	RCP5	RA6	R					Le	ad 3

RC	:P5-I	RA6	R					Lea	d 20
Orie	ntation		Ho	orizon	tal		1	/ertica	al
Sp	beed			Ad	celera	ation ((G)		
(m	nm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
	0	6	6	6	5	5	1.5	1.5	1.5
1	160	6	6	6	5	5	1.5	1.5	1.5
-	320	6	6	6	5	3	1.5	1.5	1.5
4	180	6	6	6	5	3	1.5	1.5	1.5
e	540		6	4	3	2		1.5	1.5
٤	300		4	3				1	1

RCP5 Series

RCP5-I	RA6	R					Lea	d 12
Orientation		Но	orizon	tal		١	/ertica	ıl
Speed			A	celer	ation ((G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	25	25	18	16	12	4	4	4
100	25	25	18	16	12	4	4	4
200	25	25	18	16	10	4	4	4
300	25	25	18	12	8	4	4	4
400	20	20	14	10	6	4	4	4
500	15	15	8	6	4	4	3.5	3
600	10	10	6	3	2	4	3	2
700		6	2				2	1

RCP5-	RA6	R					Le	ad 6
Orientation		Ho	orizon	tal		\	/ertica	al
Speed			Ac	celera	ation ((G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	40	40	35	30	25	10	10	10
50	40	40	35	30	25	10	10	10
100	40	40	35	30	25	10	10	10
150	40	40	35	25	25	10	10	10
200	40	40	30	25	20	10	10	10
250	40	40	27.5	22.5	18	10	9	8
300	40	35	25	20	14	6	6	6
350	40	30	14	12	10	5	5	5
400	30	18	10	6	5	4	3	3
450	25	8	3			2	2	1

130	40	40	35	30	30	10	10	8
150	40	35	35	30	30	8	8	7
175	40	35	35	30	25	7.5	7	6
RCP5-I	RA6	R					Le	ad 3
Orientation		Ho	orizon	tal		1	/ertica	al
Speed			Ac	celera	ation (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	60	60	50	45	40	20	20	20
25	60	60	50	45	40	20	20	20
50	60	60	50	45	40	20	20	20
75	60	60	50	45	40	20	20	20
100	60	60	50	45	40	20	20	20
125	60	60	50	40	30	18	14	10
150	60	50	40	30	25	14	10	6
175	60	40	35	25	20	12	6	5
200	60	35	30	20	14	8	5	4.5
225	40	16	16	10	6	5	5	4

RCP5-	RA7	R					Lea	d 24	RCP5-I	RA7	R					Lea	d 16
Orientation		Ho	orizon	tal		1	/ertica	al	Orientation		Ho	orizon	tal		١	/ertica	al
Speed			Ac	ccelera	ation (G)			Speed			A	celer	ation (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	20	20	18	15	12	3	3	3	0	50	50	40	35	30	8	8	8
200	20	20	18	15	12	3	3	3	140	50	50	40	35	30	8	8	8
400	20	20	18	15	10	3	3	3	280	50	50	35	25	20	8	7	7
600	15	14	9	7	4	3	3	2	420	50	25	18	14	10	4.5	4.5	4
800		3	1						560	12	10	5	3	2	2	1	1

RCP5-	RA7	R					Le	ad 8
Orientation		Но	orizon	tal		\	/ertica	al
Speed			A	celera	ation ((G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	60	60	50	45	40	18	18	18
70	60	60	50	45	40	18	18	18
140	60	60	50	45	40	16	16	12
210	60	60	40	31	26	10	10	9
280	60	26	16	10	8	8	5	3
350	30	3				3	1	
420	2							

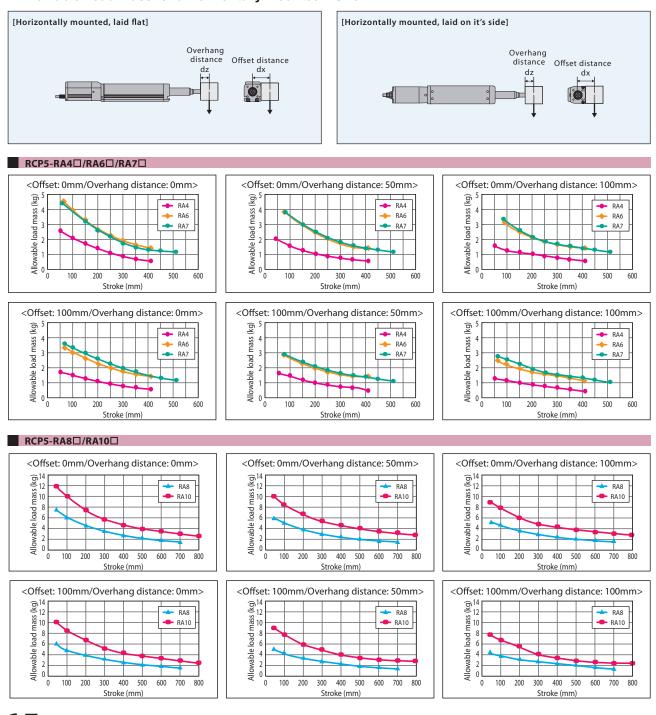
F	RCP5-I	RA7R	
	Orientation		Herine

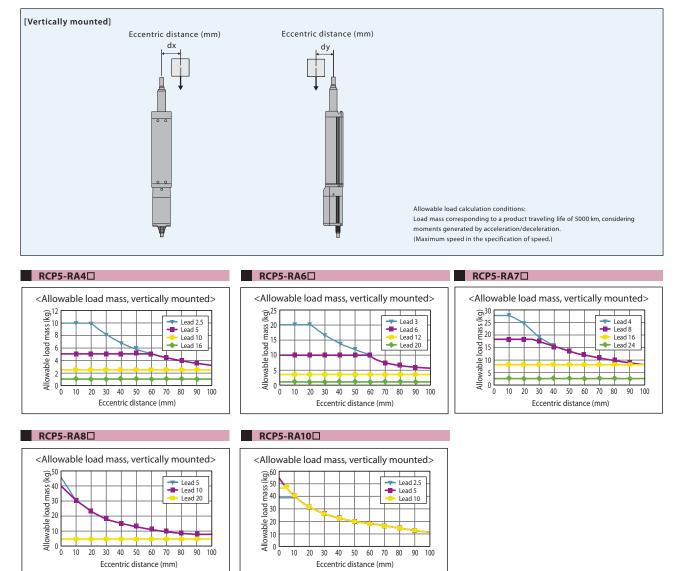
 Clean of the section of the sec

Lead 4

High-output Setting Disabled

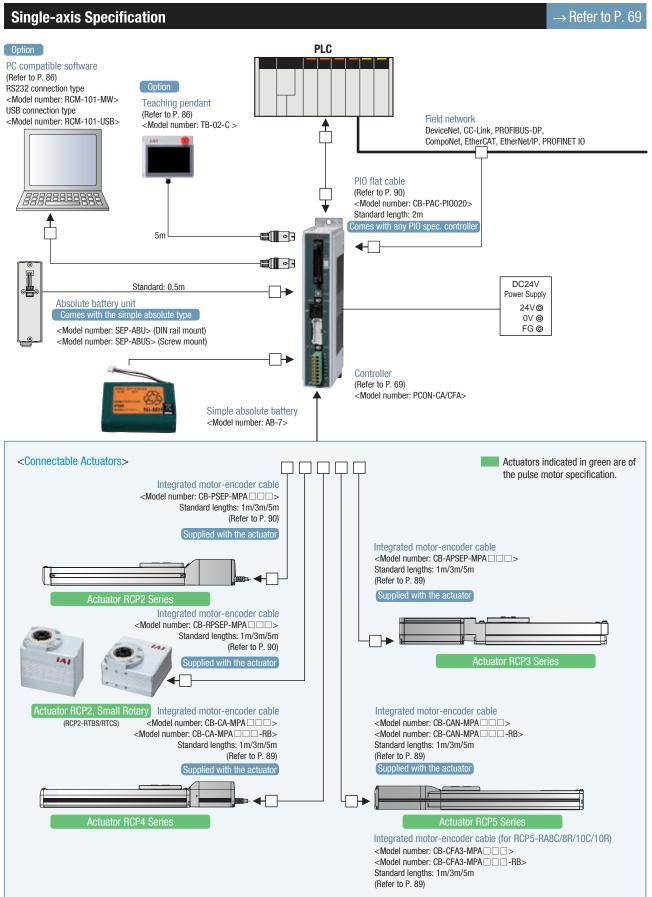
RCP5 Series	Slider Type Side-mounted	Motor Specification	
CCPS-SAAR Lead 16 $\frac{1}{100}$ $\frac{1}{20}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RCPS-SA4R Lead 5 0rentation Horizontal Vertation 0rentation 10/2 0.3 0.5 0.7 0.1 0.2 0.3 0 12 12 12 10 4.5 4.5 4.5 0 12 12 10 4.5 4.5 4.5 10 10 10 9 8 7 4 5 5 5 5 5 5 5 5 5 5 <td< td=""><td>RCP5-SA4R Lead 2.5 $\overline{Printation}$ $Printatio$</td></td<>	RCP5-SA4R Lead 2.5 $\overline{Printation}$ $Printatio$
0 18 2 200 18 2 400 18 2 600 9 1.5 800 1	0 35 5 140 35 5 280 25 3 420 15 1.5 560 4 0.5	0 40 10 70 40 10 140 40 7 210 25 4 280 6 1	0 40 15 35 40 15 70 40 15 105 40 10 140 22 3
RCP5 Series	Rod Type Side-mounted N		
RCP5-RA4# Lead 16 Otimation Horizontal Vertical Speed	Lead 10 Orientation Vertical Speed Vertical (mm/s) 0.1 0.3 0.5 0.7 0.1 0.2 0.3 0 10 10 9 8 2 2 2 2 85 10 10 9 8 2 2 2 2 260 10 9 8 7 2 2 2 2 350 8 7 6 5 2 2 1.5 435 7 6 4 3 1 1 1	RCP5-RA4F Lead 5 Orientation Horizonta' Vertication Speed Xacceleration Vertication (mm/s) 0.1 0.3 0.5 0.7 0.1 0.2 0.5 0.7 0.1 0.2 0.2 22 22 20 5 5 5 80 22 22 20 18 5 5 5 130 22 22 20 18 5 5 5 130 22 22 20 18 5 5 5 130 22 22 20 18 5 5 5 130 22 22 20 18 5 5 5 130 22 22 20 18 5 5 5 131 21 10 4 4 3	RCP5-RAAR Lead 2.5 Orientation Horizontal Vertical Speed × Lead 2.5 (mm/s) 0.1 0.3 0.5 0.7 0.1 0.2 0.3 0 35 35 32 30 10 10 10 20 35 32 30 10 10 10 40 35 35 32 30 10 10 10 65 35 35 30 25 10 10 10 65 35 30 25 20 10 8 7 105 30 25 20 15 8 7
Lead 20 Dirintation Vertical Speed Vertical (mm/s) 0.2 0.3 0.5 0.7 0.1 0.2 0 6 6 1 1.5 1.	525 1 1 0.5 0.5 0.5 RCP5-RAC Lead 12 Vertical Speed Ccceleration (G) (mm/s) 0.2 0.3 0.5 0.7 0.1 0.2 0 25 4 4 4 4 4 300 20 3 4 4 3 3 400 10 2 2 3 4 300 20 5 4 3 3 3 400 1 1	260 15 12 8 6 4 3 2 RCPS-RAG Lead 6 Orientation Vertical Speed Norceleration (G) (mm/v) 0.2 0.3 0.5 0.7 0.1 0.2 0 40 10 10 100 40 10 10 150 40 8 200 35 8 3 200 10 3 3 3 3	130 25 20 15 10 6 5 4 RCP5-RA6R Lead 3 Orientation Vertical Speed Acceleration (G) (mm/s) 0.2 0.3 0.5 0.7 0.1 0.2 0 40 20 <th< th=""></th<>
Speed Horizontal Vertical 0rientation Horizontal Vertical Speed Acceleration Vertical 0 0.2 0.3 0.5 0.7 0.1 0.2 0 18 Image: Constraint of the system of the s	RCP5-RA7R Lead 16 Orientation Vertical Speed (mm/s) Acceleration (S) 0.2 0.3 0.5 0.7 0.1 0.2 0.40 40 5 5 5 3 3 4 5 5 140 40 4 4 5 5 3 3 4 4 5 140 6 4 4 5 3 3 4 4 5 3	Lead 8 Orientation Horizontal Vertical Speed (mm/s) 0.2 0.3 0.5 0.7 0.1 0.2 0 50 45 7 1.15 175 70 50 4 4 7 140 50 4 2 2	RCP5-RA7K Lead 4 Orientation Horizontation Vertical Speed 0.2 0.3 0.5 0.7 0.1 0.2 (mm/s) 0.2 0.3 0.5 0.7 0.1 0.26 35 55 Image: 100 minipage 26 26 26 26 70 55 Image: 100 minipage 15 Image: 100 minipage 105
RCP5-RA8R Lead 20 Orientation Horizontal Orientation Speed Acceleration (G) Speed (mm/s) 0.2G (mm/s) 0 300 30 300 300 350 14 330 400 6 400	RCP5-RA8R L Vertical Orientation Horizontal Acceleration (G) Speed Acceleration 5 0 60 3.5 160 60 2 180 25 0.5 190 15 2.05 200 12		Lead 5 Horizontal Acceleration (G) Orientation Vertical 0.1G Speed Acceleration (G) 100 0 70 100 45 70 75 70 60 45 80 25 90 16 100 10 10 10 10
RCP5-RA10RLead10OrientationHorizontalSpeedSpeedAcceleration (G)Speed080020080342008037455375105120140	Vertical Orientation Horizontal Acceleration (G) 0.04G 0.02G 80 0 150 69 58 50 35 20 15 10 10		Corientation Vertical Acceleration (G) Oning Speed Acceleration (G) 300 0 150 300 20 150 300 30 95 35 70 37 60 50 6 50 6

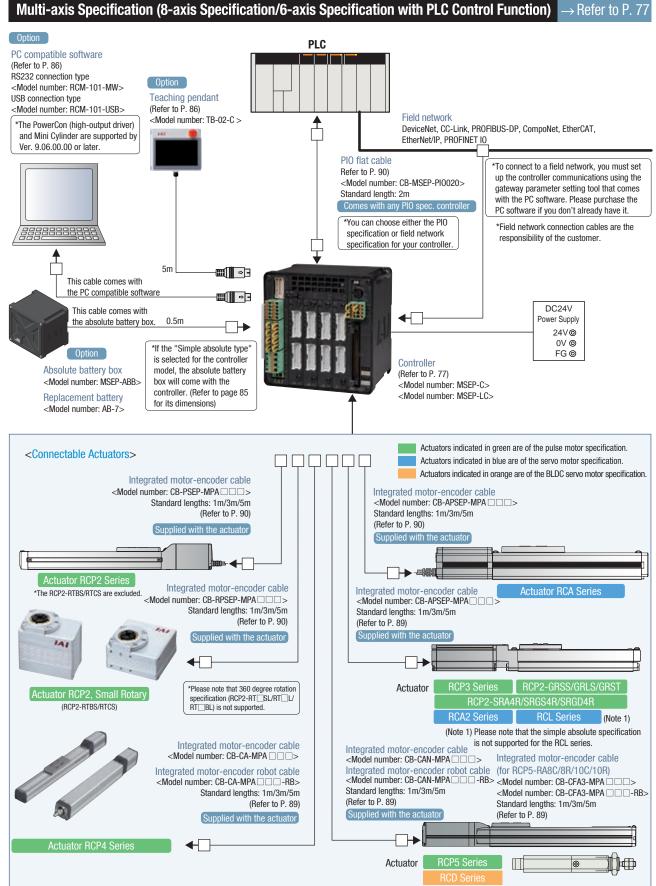

Selection __ RCP5 series


RCP5 Series		Belt Type Top-	Belt Type Top-mounted Motor / Bottom-mounted Motor Specification					
CP5-BA4/BA4U			RCP5-BA6/BA6U			RCP5-BA7/BA7U		
Orientation	Horizontal		Orientation	Horizontal		Orientation	Horizontal	
Speed	Acceleration (G)		Speed	Acceleration (G)		Speed	Acceleration	
(mm/s)	0.5G		(mm/s)	0.5G		(mm/s)	0.5G	
0	1.5		0	6	-	0	16	
200	1.5		600	6		100	16	
800	1.5		800	4	-	1000	5	
1000	1		1000	3		1400	2	
1200	0.5		1500	1	-	1600	2	

Selection Guideline (Selecting the Allowable Load for the Radial Cylinder)

The radial cylinder has a built-in guide, so loads up to a certain level can be applied to the rod without using an external guide. Refer to the graphs below for the allowable load mass. If the allowable load will be exceeded under the required operating conditions, add an external guide.


■ Allowable Load Mass for a Horizontally Mounted RCP5



■ Allowable Load Mass for a Vertically Mounted RCP5

System Configuration

The Position Controllers for RCP5/RCP4 (PowerCon Type) RCP3/RCP2

The built-in high-output driver designed for the RCP5/RCP4 achieves greater torque when operated at high speed

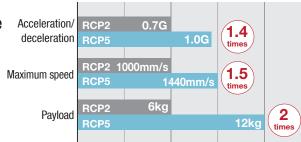
The newly developed high-output driver (patent pending) has achieved significant improvements compared to the conventional model (RCP2 Series), with a 1.4 times higher acceleration rate, 1.5 times higher maximum speed, and twice as much in payload.

(*) The rates of improvement vary depending on the type. (*) The RCP3/RCP2 are also supported. (*) PCON CA apply.

(*) PCON-CA only

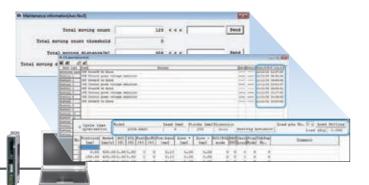
Battery-less absolute encoder compatibility

The RCP5 equipped with a battery-less absolute encoder is supported. Since no battery is needed to retain position data, less space is required in the control panel, which in turn leads to lower cost of your equipment.

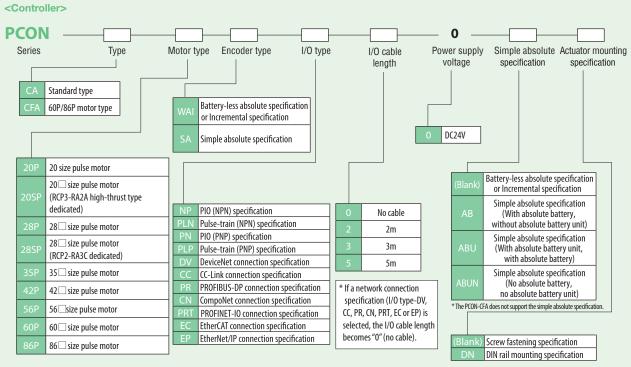

3 A common board leads to improved ease of maintenance

While conventional controllers require a separate set of boards for each actuator, the PCON-CA/CFA use common boards for all actuators, meaning that actuators of different models such as RCP5, RCP4, RCP3 and RCP2 can be operated simply by changing the controller settings. The result is significant reduction in maintenance stock.

Smart tuning function, maintenance information, calendar function


You are able to set the optimal acceleration rate based on the transport load, by using the smart tuning function. In addition, you can record the number of times the actuator has moved and the distance it has traveled, for maintenance purposes.

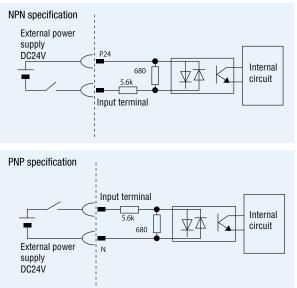
(*) You need PC compatible software Ver. 8.03.00.00 or later or a TB-02 (teaching pendant) to use the smart tuning function.


List of Models

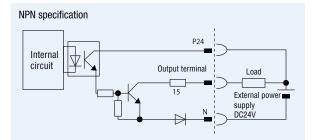
I/O type			Pulse-train type (*1)	Field network type							
		Positioner type		DeviceNet	CC-Link	₽ŖĢĘŢ [®] Ibus	CompoNet >>>	prof i ® Initi	Ether CAT.	EtherNet/IP	
				DeviceNet connec- tion specification	CC-Link connection specification	PROFIBUS-DP connection specification	CompoNet connec- tion specification	PROFINET-IO connection specification	EtherCAT connec- tion specification	EtherNet/ IP connection specification	
I/O type model number		NP/PN	PLN/PLP	DV	CC	PR	CN	PRT	EC	EP	
	Battery-less absolute specification or Incremental specification		0	0	0	0	0	0	0	0	0
		with absolute battery	0	—	0	0	0	0	0	0	0
PCON-CA	Simple absolute specification	with absolute battery unit	0	—	0	0	0	0	0	0	0
	specification	No absolute battery	0	_	0	0	0	0	0	0	0
PCON-CFA	Battery-less absolu or Incremental		0	0	0	0	0	0	0	0	0

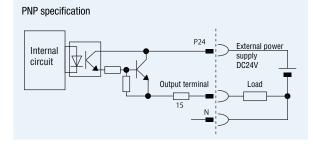
Position Controllers for RoboCylinder: PCON-CA/CFA

(*1) If the RCP5 is used with pulse-train I/Os, the actuator must complete a home return prior to operation, as with any incremental actuator.


Model Specification Items

* The mounting specification for the absolute battery unit (screws mounting or DIN rail mounting) conforms to the mounting specification for the controller.


PIO I/O Interface


Input Part	External Input Specifications		
Item Specification			
Input voltage	DC24V ±10%		
Input current	5 mA, 1 circuit		
ON/OFF voltage	ON voltage: 18 VDC min. OFF voltage: 6 VDC max.		

Output Part External Output Specifications

Item	Specification
Load voltage	DC24V
Maximum load current	50 mA, 1 circuit
Leak current	2 mA max. per point

Types of PIO Patterns (Control Patterns)

This controller supports seven types of control methods. Please select the PIO pattern that best suits your purpose in Parameter No. 25, "PIO Pattern Selection".

Туре	Set value of Parameter No. 25	Mode	Overview
PIO pattern 0	0 (factory setting)	Positioning mode (standard type)	 Number of positioning points: 64 points Position number command: Binary Coded Decimal (BCD) Zone signal output (*1) : 1 point Position zone signal output (*2) : 1 point
PIO pattern 1	1	Teaching mode (teaching type)	 Number of positioning points: 64 points Position number command: Binary Coded Decimal (BCD) Position zone signal output (*2) : 1 point Jog (inching) operation using PIO signals is supported. Current position data can be written to the position table using PIO signals.
PIO pattern 2	2	256-point mode (256 positioning points)	 Number of positioning points: 256 points Position number command: Binary Coded Decimal (BCD) Position zone signal output (*2) : 1 point
PIO pattern 3	3	512-point mode (512 positioning points)	 Number of positioning points: 512 points Position number command: Binary Coded Decimal (BCD) No zone signal output
PIO pattern 4	4	Solenoid valve mode 1 (7-point type)	 Number of positioning points: 7 points Position number command: Individual number signal ON Zone signal output (*1) : 1 point Position zone signal output (*2) : 1 point
PIO pattern 5	5	Solenoid valve mode 2 (3-point type)	 Number of positioning points: 3 points Position number command: Individual number signal ON Completion signal: A signal equivalent to a LS (limit switch) signal can be output. Zone signal output (*1): 1 point Position zone signal output (*2): 1 point
PIO pattern 6 (Note 1)	6	Pulse-train control mode	 Differential pulse input (200 kpps max.) Home return function Zone signal output (*1) : 2 points No feedback pulse output

(*1) Zone signal output: A desired zone is set by Parameter Nos. 1 and 2 or 23 and 24, and the set zone always remains effective once home return has completed.

(*2) Position zone signal output: This function is available as part of a position number. A desired zone is set in the position table and becomes effective only when the corresponding position is specified, but not with commands specifying other positions. (Note 1) Pulse Train Control Model is available only if the pulse train control type is indicated (from PCON-CA-PLN and PLP) at the time of purchase.

PIO Patterns and Signal Assignments

The table below lists the signal assignments for the I/O flat cable under different PIO patterns. Connect an external device (such as a PLC) according to this table.


					Parameter No. 25, "	PIO pattern selection	n"	
	Category	PIO function	0	1	2	3	4	5
			Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid valve mode 1	Solenoid valve mode 2
		Number of positioning points	64 points	64 points	256 points	512 points	7 points	3 points
	Input	Home return signal	0	0	0	0	0	—
Pin number		Jog signal	—	0	—	—	—	—
		Teaching signal (writing of current position)	—	0	—	—	—	—
		Brake release	0	—	0	0	0	0
		Moving signal	0	0	—	—	—	—
	Output	Zone signal	0	riangle (Note 1)	riangle (Note 1)	—	0	0
		Position zone signal	0	0	0	—	0	0
1A	24V				P24			
2A	24V				P24			
ЗA	Pulse input				_			
4A	i uise input				_			
5A		INO	PC1	PC1	PC1	PC1	ST0	ST0
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(JOG+)
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2(-)
8A		IN3	PC8	PC8	PC8	PC8	ST3	—
9A		IN4	PC16	PC16	PC16	PC16	ST4	_
10A		IN5	PC32	PC32	PC32	PC32	ST5	_
11A		IN6	—	MODE	PC64	PC64	ST6	—
12A	Input	IN7	—	JISL	PC128	PC128	_	—
13A	Input	IN8	—	JOG+	—	PC256	_	—
14A		IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL
15A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD
16A		IN11	HOME	HOME	HOME	HOME	HOME	—
17A		IN12	*STP	*STP	*STP	*STP	*STP	_
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR	—	—
19A		IN14	RES	RES	RES	RES	RES	RES
20A		IN15	SON	SON	SON	SON	SON	SON
1B		OUT0	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PE0	LS0
2B		OUT1	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PE1	LS1(TRQS)
3B		OUT2	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PE2	LS2 (Note2)
4B		OUT3	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PE3	
5B		OUT4	PM16	PM16	PM16	PM16	PE4	
6B		OUT5	PM32	PM32	PM32	PM32	PE5	
7B		OUT6	MOVE	MOVE	PM64	PM64	PE6	
8B	Output	OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1
9B	output	OUT8	PZONE/ZONE2	PZONE/ZONE1	PZONE/ZONE1	PM256	PZONE/ZONE2	PZONE/ZONE2
10B		OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS
11B		OUT10	HEND	HEND	HEND	HEND	HEND	HEND
12B		OUT11	PEND	PEND/WEND	PEND	PEND	PEND	
13B		OUT12	SV	SV	SV	SV	SV	SV
14B		OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS
15B		OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
16B		OUT15	LOAD/TRQS *ALML	*ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	*ALML
17B	Pulse input							
18B					_			
19B	0V				N			
20B	0V				N			

(Note) In the table above, asterisk symbol "** accompanying each code indicates a negative logic signal. PM1 to PM8 are alarm binary code output signals that are used when an alarm generates. (Note 1) In all PIO patterns other than 3, this signal can be switched with PZONE by setting Parameter No. 149 accordingly. (Note 2) The setting will not become effective until the home return is completed.

Reference) Negative logic signal Signals denoted by "** are negative logic signals. Negative logic input signals are processed when turned OFF. Negative logic output signals normally remain ON while the power is supplied, and turn OFF when the signal is output. Note: The names of the signals above inside "()" are functions before the unit returns home.

Pulse-train Control Circuit

Host Unit = Differential Type

Host Unit = Open Collector Type

The AK-04 (optional) is needed to input pulses.

Caution: Use the same power supply for open collector input/output to/from the host and for the AK-04.

Command Pulse Input Patterns

	Command pulse-train pattern	Input terminal	Forward	Reverse					
	Forward pulse-train	PP·/PP							
	Reverse pulse-train	NP·/NP							
jic	A forward pulse-train indicates the amount of motor rotation in the forward direction, while a reverse pulse-train indicates the amount of motor rotation in the reverse direction.								
Negative logic	Pulse-train	PP·/PP							
Negat	Sign	NP·/NP	Low	High					
	The command pulses indicate the amount of motor rotation, while the sign indicates the rotating direction.								
	Phase A/B pulse-train	PP·/PP							
		NP·/NP							
	Command phases A and B having a 90° phase difference (multiplier is 4) indicate the amount of rotation and the rotating direction.								
	Forward pulse-train	PP·/PP							
0	Reverse pulse-train	NP·/NP							
Positive logic	Pulse-train	PP·/PP							
Positiv	Sign	NP·/NP	High	Low					
	Phase A/B pulse-train	PP·/PP							
	r nase Avo puise-nalli	NP·/NP							

I/O Signals in Pulse-train Control Mode

The table below lists the signal assignments for the flat cable in the pulse-train control mode. Connect an external device (such as PLC) according to this table.

Pin number 1A 2A 3A	Category 24V	I/O number	Signal abbreviation	Signal name	Function description		
1A 2A	24V	_					
			P24	Power supply	I/O power supply +24 V		
2 ^	24V		P24	Power supply	I/O power supply +24 V		
SA	Dulco input		PP	Differential pulse-train input (+)	Differential pulses are input from the best. Up to 200 keps can be input		
4A	Pulse input		/PP	Differential pulse-train input (-)	Differential pulses are input from the host. Up to 200 kpps can be input.		
5A		NO	SON	Servo ON	The servo is ON while this signal is ON, and OFF while the signal is OFF.		
6A		IN1	RES	Reset	Present alarms are reset when this signal is turned ON.		
7A		IN2	HOME	Home return	Home return operation is performed when this signal is turned ON.		
8A		IN3	TL	Torque limit selection	When this signal is turned ON, the motor torque is limited to the value set by the parameter.		
9A		IN4	CSTP	Forced stop	The actuator is forcibly stopped when this signal has remained ON for 16 ms or more. The actuator decelerates to a stop at the torque set in the controller and the servo turns OFF.		
10A		IN5	DCLR	Deviation counter clear	This signal clears the deviation counter.		
11A		IN6	BKRL	Forced brake release	The brake is forcibly released.		
12A	Input	IN7	RMOD	Operation mode switching	The operation mode can be switched when the MODE switch on the controller is set to AUTO. (AUTO when this signal is OFF, and to MANU when the signal is ON.)		
13A		IN8	NC	—	Not used		
14A		IN9	NC	—	Not used		
15A		IN10	NC	—	Not used		
16A		IN11	NC	—	Not used		
17A		IN12	NC	—	Not used		
18A		IN13	NC	—	Not used		
19A		IN14	NC	—	Not used		
20A		IN15	NC	—	Not used		
1B		OUTO	PWR	System ready	This signal turns ON when the controller becomes ready after the main power has been turned on.		
2B		OUT1	SV	Servo ON status	This signal turns ON when the servo is ON.		
3B	_	OUT2	INP	Positioning complete	This signal turns ON when the amount of remaining travel pulses in the deviation counter falls within the in-position band.		
4B		OUT3	HEND	Home return complete	This signal turns ON upon completion of home return.		
5B		OUT4	TLR	Torque limited	This signal turns ON upon reaching the torque limit while the torque is limited.		
6B		OUT5	*ALM	Controller alarm status	This signal turns ON when the controller is normal, and turns OFF when an alarm generates.		
7B		OUT6	*EMGS	Emergency stop status	This signal turns ON when the emergency stop of the controller is cancelled, and turns OFF when an emergency stop is actuated.		
8B	Output	OUT7	RMDS	Operation mode status	The operation mode status is output. This signal turns ON when the controller is in the manual mode.		
9B		OUT8	ALM1				
10B		OUT9	ALM2	Alarm code output signal	An alarm code is output when an alarm generates. For details, refer to the operation manual.		
11B		0UT10	ALM4				
12B		0UT11	ALM8				
13B		0UT12	*ALML	Minor failure alarm	This signal is output when a message-level alarm generates.		
14B		OUT13	NC	_	Not used		
15B		OUT14	ZONE1	Zone signal 1	This signal turns ON when the current position of the actuator falls within the		
16B		0UT15	ZONE2	Zone signal 2	parameter-set range.		
17B	Pulse input		NP	Differential pulse-train input (+)	Differential pulses are input from the host. Up to 200 kpps can be input.		
18B			/NP	Differential pulse-train input (-)			
19B	0V		N	Power supply	I/O power supply 0 V		
20B	0V		N	Power supply	I/O power supply 0 V the power is supplied, and turn OFF when the signal is output.		

(Note) The number of encoder pulses is 800 with all RCP5 series models. For details, refer to the operation manual.

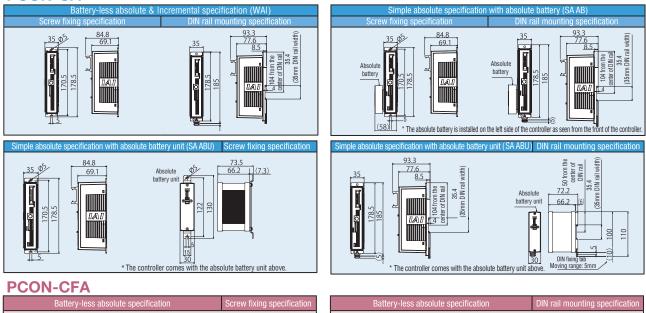
Field Network Specification: Explanation of Operation Modes

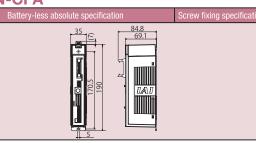
If the PCON-CA is controlled via a field network, you can select one of the following five modes to operate the actuator. Please note that the data areas required on the PLC side will vary depending on the mode.

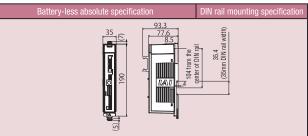
Mode Description

		Mode	Description			
	0	Remote I/O mode	In this mode, the actuator is operated by controlling the ON/OFF of bits via the network, just like with the PIO specification. The number of positioning points and functions vary with each of the operation patterns (PIO patterns) that can be set by the controller's parameter.			
	1	The target position is specified by directly entering a value, while other operating conditions (speed, acceleration, etc.) are set by specifying the desired position number corresponding to the desired operating conditions already input to the position data table.				
	2	Half direct numerical mode	The actuator is operated by specifying the speed, acceleration/deceleration and push current, in addition to the target position, by directly entering values.			
3 Pumorical mode entering values.			The actuator is operated by specifying the target position, speed, acceleration/deceleration, push current control value, etc., by directly entering values. The current position, current speed, command current, etc., can also be read.			
	4	Remote I/O mode 2	Same as the above remote I/O mode, plus the current position read function and command current read function.			

Required Data Size for Each Network


		DeviceNet	CC-Link	PROFIBUS-DP	CompoNet	PROFINET-IO	EtherCAT	EtherNet/IP
0	Remote I/O mode	1CH	1 station	2 bytes	2 bytes	2 bytes	2 bytes	2 bytes
1	Position/simple direct numerical mode	4CH	1 station	8 bytes	8 bytes	8 bytes	8 bytes	8 bytes
2	Half direct numerical mode	8CH	2 stations	16 bytes	16 bytes	16 bytes	16 bytes	16 bytes
3	Full direct numerical mode	16CH	4 stations	32 bytes	32 bytes	32 bytes	32 bytes	32 bytes
4	Remote I/O mode 2	6CH	1 station	12 bytes	12 bytes	12 bytes	12 bytes	12 bytes


List of Functions by Operation Mode


	Remote I/O mode	Position/simple direct numerical mode	Half direct numerical mode	Full direct numerical mode	Remote I/O mode 2	
Number of positioning points	512 points	768 points	Unlimited	Unlimited	512 points	
Operation by direct position data specification	—	0	0	0	_	
Direct speed/acceleration specification	_	_	0	0	_	
Push-motion operation	sh-motion operation		0	0	0	
Current position read	—	0	0	0	0	
Current speed read	—	—	0	0	—	
Operation by position number specification	0	0	_	_	0	
Completed position number read			_	—	0	

* " \bigcirc " indicates that the operation is supported, and "-" indicates that it is not supported.

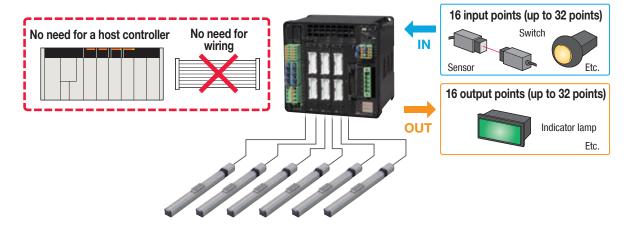
External Dimensions PCON-CA



Specification List

Item				Description					
		lem		PCON-CA	PCON-CFA				
Number of conti	rolled axes			1 axis					
Power-supply vo	oltage			DC24V±10%	DC24V±10%				
Load current	RCP2		20P, 28P, 28SP	1 A max.					
(including	RCP2 RCP3	Motor type	42P, 56P	2.2 A max.					
control-side	INUES		60P, 86P		6 A max				
current	0004		28P, 35P,	High-output setting disabled: 2.2 A max.					
consumption)	RCP4 RCP5	Motor type	42P, 56P, 42SP	ligh-output setting enabled: 3.5 A rated / 4.2 A max.					
(Note 1)	nuru		60P, 86P, 56SP		6 A max				
Electromagnetic	brake power (for a	actuator with brake	e)	DC24V ±10% 0.15A (max)	DC24V ±10% 0.5A (max)				
Rush current (N				8.3A	10A				
Momentary pow	er failure resistand	e		MAX.500µs					
Supported enco	der			Battery-less absolute encoder/incremental encoder					
Actuator cable le	Actuator cable length			20m max.					
External interfac	0	PIO specification		Dedicated 24-VDC signal inputs/outputs (NPN/PNP selectable) Up 1	to 16 input points, up to 16 output points, cable length up to 10m				
LALEITTAI IIILEITAU	Field network specification			DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, PROFINET-IO, EtherCAT, EtherNet/IP					
Data setting, inp	Data setting, input method			PC software, touch panel teaching pendant, teaching pendant					
Data retention m	nemory			Position data and parameters are saved in non-volatile memory. (There	e are no limits to how many times the memory can be rewritten.)				
Operation mode				Positioner mode/pulse-train control mode (selectable by parameter se	tting)				
Number of posit	ioner-mode positio	ons		Up to 512 points for positioner type or up to 768 points for network type (Note) The total number of positioning points varies depending on which PIO pattern is selected.					
				Differential type (line-driver type): 200 kpps max., cable length up to 10m					
Pulse-train inter	face	Input pulses		Open-collector type: Not supported. * If the host uses open-collector outputs, use the separately sold AK-04 (optional) to change them to differential outputs.					
		Command pulse r	nagnification	1/50 < A/B < 50/1					
		(Electronic gear:	A/B)	Setting range of A and B (set by parameters): 1 to 4096					
		Feedback pulse of	output	None					
Insulation resist	ance			Not less than 10 M Ω at 500 VDC,					
Electric shock p	rotection mechanis	sm		Class I, basic insulation					
		Incremental speci	fication	Screw fixing type: Not more than 250g / DIN rail fixing type: Not more than 285g	Screw fixing type: Not more than 270g / DIN rail fixing type: Not more than 305g				
Mass (Note 3)		Simple absolute s	pecification (includ-	Screw fixing type: Not more than 450g / DIN rail fixing type: Not more					
. ,		ing 190 g for bat	tery)	than 485g					
Cooling method				Natural cooling by air	Forced cooling by air				
		Ambient operatir	ng temperature	0 to 40°C					
		Ambient operatir		Not more than 85% RH (non-condensing)					
Environment		Operating ambie	nce	Free from corrosive gases					
		Degree of protec		IP20					

Note 1) 0.3 A higher for the field network specification. Note 2) Rush current flows for approx. 5 msec after the power is input (at 40°C). Exercise caution that the rush current value varies depending on the impedance of the power line. Note 3) 30 g heavier for the field network specification.



1

Adding the PLC Function

MSEP-LC

This function makes it possible to operate actuators using a ladder logic program, and to control the state of I/O (Input/Output) signals. If your system is small enough, it can be controlled using only the MSEP-LC. In a large scale system an MSEP-LC can perform distributed control of each process and reduce the load of a main PLC. In addition, it can also simplify your program and make troubleshooting easier.

2

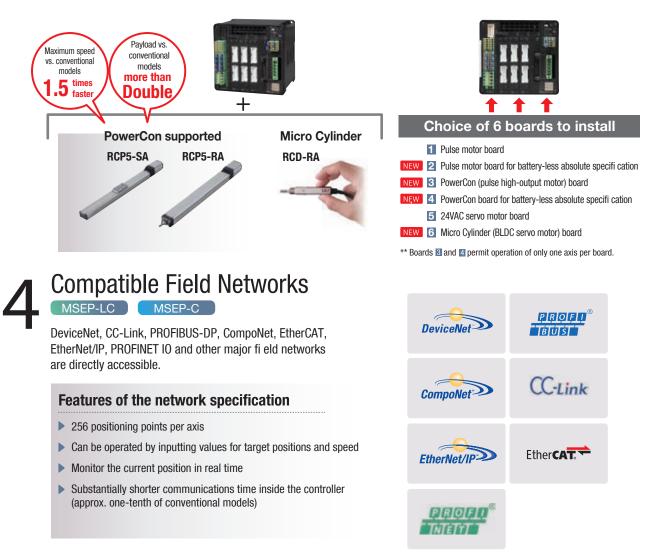
Supporting Actuators with the Battery-less Absolute Encoder

Features of actuators with the battery-less absolute encoder

A Home return is no longer necessary, so these actuators start and restart quicker than incremental actuators to begin working right away. They are also free from problems relating to home return, such as position shift.

C Compared to standard absolute actuators, no battery is required, which results in the following benefits:

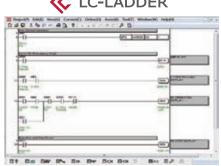
- No need to purchase or replace batteries
- No need to control the stocks and replacement timing of batteries
- No need to make adjustment (absolute reset) normally required after battery replacement


RoboCylinder with the battery-less absolute encoder

Supporting the PowerCon (High-output Driver) and Micro Cylinder

MSEP-LC MSEP-C

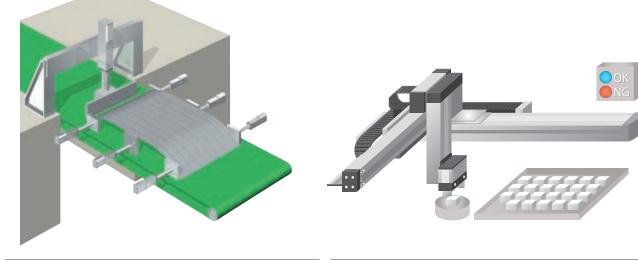
When the PowerCon (newly developed high-output driver) is installed and combined with the RCP5 or RCP4, it has achieved a 1.5 times faster maximum speed as well as double the payload compared to the conventional models. In addition, the ultra-small Micro Cylinders are also supported, giving you a greater variety of actuators - ranging from small to large - to choose from.


5 Free Ladder Logic Support Software Is Available from Our Website

MSEP-LC

Ladder logic support software is available for free download from our website. You can create a ladder program before purchasing any product.

www.robocylinder.de -> downloads ->software


Application Examples

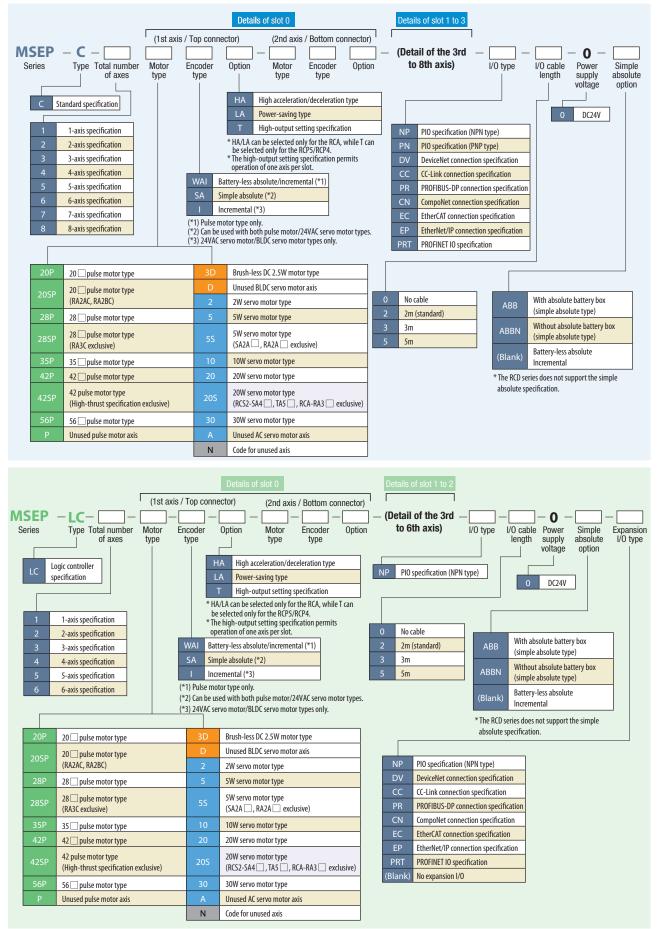
Rear Panel Positioning System

Work parts that have shifted can be realigned during the processing stage of an automotive rear panel by corrective "pushing" by the RoboCylinder. Even when the number of axes increases, a single controller can support them all, making wiring simple.

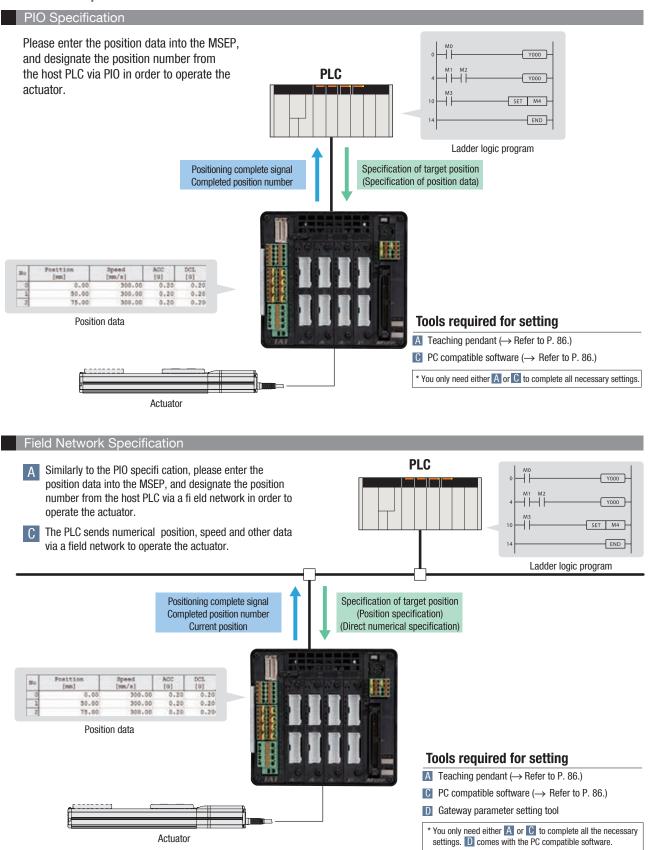
Palletizing System

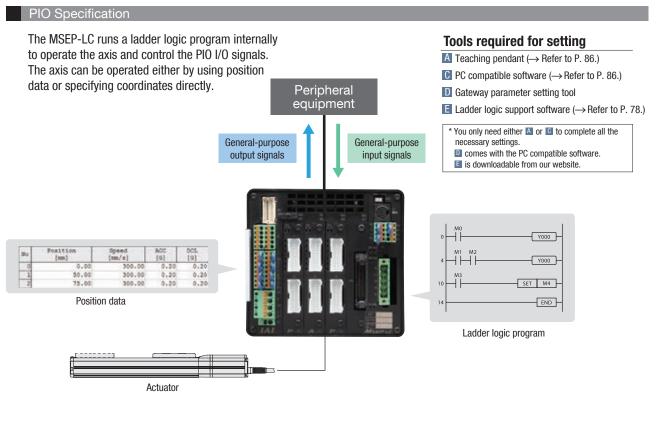
Thanks to the battery-less absolute encoder, operations can easily be resumed even after an emergency stop or other halts in operation.

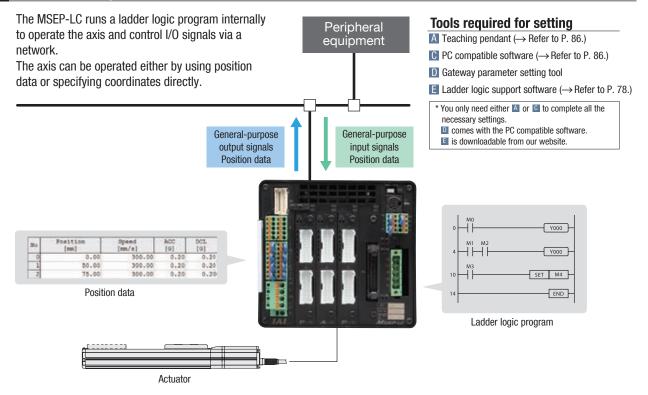
Work Transfer Between Processing Systems

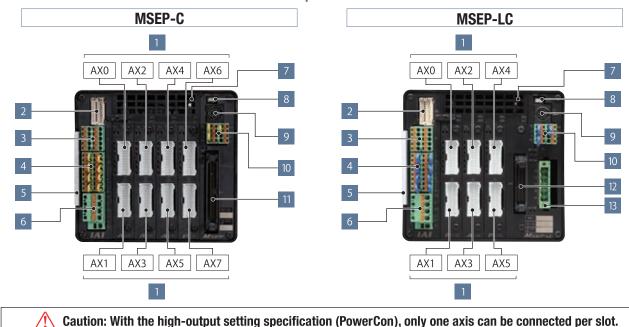

Work parts can be transferred between systems without using a dedicated PLC.

Positioning for Automotive Assembly Lines


In a large-scale assembly line, implementing distributed control of each process and connecting to the host controller via a field network will reduce the load of the host controller.


MSEP Controller Models




How to Operate the MSEP-LC

Field Network Specification

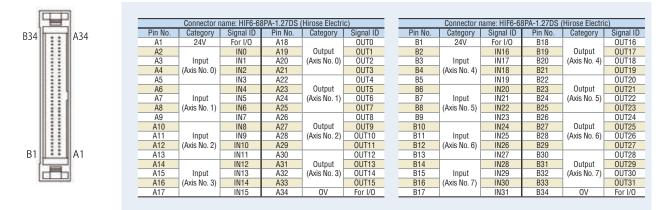
Controller <MSEP-C/LC>__ RCP5 series

Names of the MSEP Controller Components

Descriptions of Each Component

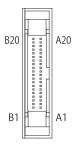
Motor-encoder connectors for the actuator connection 1 Connect motor-encoder cable to the actuator Connector for the absolute data backup battery 2 Connect the absolute data backup battery if the controller has the absolute position encoder specification Connector for the external brake input 3 The connector to input a signal to release the brake for the actuator externally. Connector for the emergency stop input for power source shut-off 4 The emergency stop input connector to connect in/output terminal of the external relay of the motor drive shut-off and each driver slot (*1). Information card for configuration of the connecting axes 5 The information card contains information regarding the configuration of the controller axes which is removable to examine the contents. +24 V power source input connector 6 The main power source connector for the controller. Motor drive source shut-down is possible while restoring the power source for the controller unit in case of an emergency shut-down; This is because the terminals for the power source of the motor and the controller are separate. Fan unit 7 Easily replaceable fan unit. (Replacement fan unit: Model MSEP-FU) AUTO/MANUAL switch 8 To switch automatic operation to/from manual operation SIO connector 9 To connect teaching box and the connecting cable for PC software System I/O connector 10 The connector for remote AUTO/MANU switch input and emergency stop input for the entire controller with functions including an external regeneration-resistance expansion terminal. PIO connector/ field network connection connector (MSEP-C only) 11 The PIO specification - connects to a 68-pin ribbon I/O cable. The field network specification - connects to a field network type specified on the MSEP controller. Standard I/Os (MSEP-LC only) 12 The MSEP-LC comes installed with a 40-pin PIO connector as standard equipment. Expansion I/Os (MSEP-LC only) 13 Expansion I/Os can be installed as an option. Available I/O types include PIO, DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, Ethernet/IP, EtherCAT and PROFINET-IO.

(*1) The shut-off feature is available on a single slot basis which is for two axes per slot. Please note that a single axis basis cannot be accommodated.


Input/Output (PIO) Signals

The MSEP-C has dedicated inputs and outputs set to PIO signals at 32 input points/32 output points. The axis operates when each signal is turned ON/OFF from the host PLC.

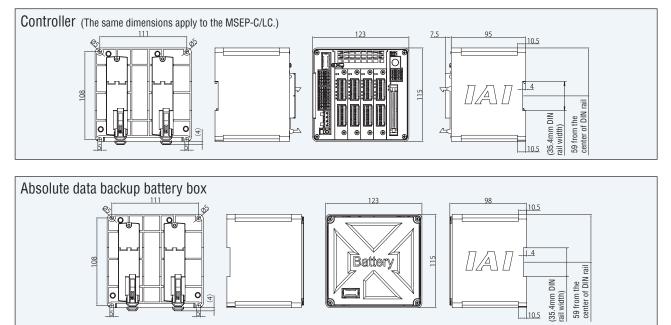
With the MSEP-LC, general-purpose input/output signals at 32 input points/32 output points can be used in a ladder logic program by using the standard 16 input points/16 output points plus expansion I/Os.


PIO Wiring Diagram for MSEP-C

PIO Wiring Diagram for MSEP-LC

A1 B1 A20 B20 Standard I/Os Pin No. Category Assigned memory Pin No. Categor +24-V external input A11 A12 A1 A2 A13 A14 Not used A3 A4 A5 A6 Not used X000 X001 A15 A16 Input X002 X003 X004 A17 A18 A19 A7 Input A8 A9 X005 A10 A20

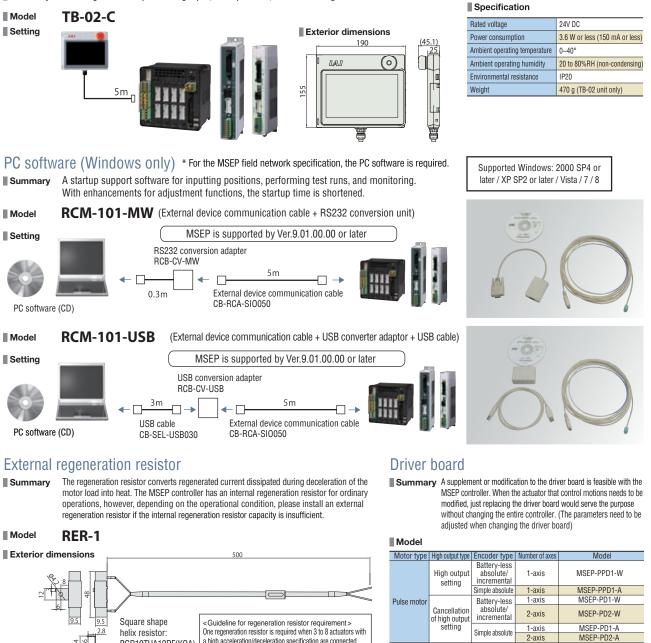
	_						
Assigned memory	P	Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
X006	_	B1		Y000	B11		Y00A
X007		B2		Y001	B12		Y00B
X008		B3		Y002	B13	Output	Y00C
X009		B4	0	Y003	B14	Uuipui	Y00D
X00A		B5		Y004	B15		Y00E
X00B		B6	Output	Y005	B16		YOOF
X00C		B7		Y006	B17		Not used
X00D		B8		Y007	B18		Not used
X00E		B9		Y008	B19] —	0 V external input
X00F	B10		Y009	B20		u v externar input	
	X006 X007 X008 X009 X00A X00B X00B X00C X00D X00E	X006 X007 X008 X009 X000A X00B X00C X00D X00E	X006 B1 X007 B2 X008 B3 X009 B4 X00A B5 X00B B6 X00C B7 X00D B8 X00E B9	X006 B1 X007 B2 X008 B3 X009 B4 X00A B5 X00B B6 X00C B7 X00D B8 X00E B9	X006 B1 Y000 X007 B2 Y001 X008 B3 Y002 X009 B4 Y003 X000 B5 Output X000 B7 Y005 X00D B8 Y007 X00E B9 Y008	X006 B1 Y000 B11 X007 B2 Y000 B11 X008 B3 Y001 B12 X009 B4 Y003 B14 X008 B5 Y003 B14 X008 B6 Y005 B16 X000 B7 Y006 B17 X000 B9 Y007 B18	X006 B1 Y000 B11 X007 B2 Y001 B12 X008 B3 Y002 B13 X009 B4 Y003 B14 X008 B5 Output Y004 B15 X008 B6 Y005 B16 Output Y006 B17 X00D B8 Y007 B18



Expa	ansion I/	US									
Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
A1		+24-V	A11		X016	B1		Y010	B11		Y01A
A2		external input	A12		X017	B2		Y011	B12	Output	Y01B
A3	_	Not used	A13	1	X018	B3	Output	Y012	B13		Y01C
A4		Not used	A14	Input	X019	B4		Y013	B14		Y01D
A5		X010	A15		X01A	B5		Y014	B15		Y01E
A6		X011	A16	Input	X01B	B6		Y015	B16		Y01F
A7	Input	X012	A17]	X01C	B7		Y016	B17		Not used
A8	Input	X013	A18		X01D	B8		Y017	B18		Not used
A9		X014	A19		X01E	B9		Y018	B19	_	0 V external inpu
A10		X015	A20		X01F	B10		Y019	B20		o v external inpu

Table of General Specifications

Specif	ication item	Description							
Number of axes in the co		8 axes max. (MSEP-C), 6 axes max. (MSEP-LC)							
Controller/ Motor input p	ower	DC24V ±10%							
Brake power		0.15 A x Number of axes							
Current consumption by		0.8A							
Controller inrush current		5A max., under 30 r	ns						
		Servo motor type	Rated ampere	Maxi Energy saver	mum Stand./Hi-accel.	Pulse motor type	Rated ampere	Maximum	
		2W	0.8A		4.6A	20P		1.0A	
		3W(RCD)	0.7A		1.5A	28P 28SP		1.0A 1.2A	
Motor consumption curr	rent	5W 10W(RCL)	1.0A		6.4A	35P		2.0A (High-output incompatible driver)	
		10W(RCA/RCA2) 20W	1.3A 1.3A	2.5A 2.5A	4.4A 4.4A	42P	2.2A (High-out- put disabled)	2.2A (High-out- put disabled)	
		20 W (20S type) 30W	1.7A 1.3A	3.4A 2.2A	5.1A 4.4A	56P	3.5A (High-out- put enabled)	4.2A (High-out- put enabled)	
Motor inrush current		Slot numbers x 10A max., under 5ms							
Motor-encoder cable len	gth	Maximum length 20	m (Note: 10m maxi	mum for simple a	absolut encoder	specification)			
Serial communication (S	SIO port: dedicated teaching)	RS485 1ch (Modbu	s protocol compatib	le) Speed 9.6 to :	230.4kbps				
External interface	PIO specification	PIO specification : DC24 V dedicated signal in/output; Maximum input of 4 points/axis; Maximum output of 4 points/axis; Maximum cable length 10m							
	Field network specification	DeviceNet, CC-Link, PROFIBUS-DP, PROFINET IO, CompoNet, EtherCAT, EtherNet/IP							
Data configuration and inp	out method	PC software application, touch panel teaching pendant, gateway parameter configuration tool							
Data retention memory		Restore the position data and parameter in non-volatile memory (unlimited input)							
Positioning points		PIO specification: 2 or 3 points Field network specification: 256 points (no limited input for the simple numerical control and the direct numerical control) (Note) The number of designated positions vary depending on the parameter configuration with motion mode selection.							
LED display (On the from	t panel)	Status LED, 4 LEDs (F		EDs (Fieldbus spe					
Electromagnetic brake for	orce release		ase by transmitting a						
Surge protection		Overcurrent protect	ion (A cut-off semic						
Electric shock protection		Class I basic insulat	ion						
Insulation resistance		DC500V 10 MΩ							
Weight		620g / 690g with the	e simple absolute end	oder specification	n / 1950g with th	e absolute data bac	kup battery box (8	-axis specification)	
Cooling method	Cooling method								
	Ambient operating temperature/humidity		Forced air cooling 0 to 40°C, under 85% RH (non-condensing)						
International Protection		IP20							
PLC function (MSEP-LC		Dedicated ladder pr	ogram (Program caj	pacity: 4k steps)					


Exterior Dimensions

Options

Teaching pendant

Summarv Teaching device for positioning input, test operation, and monitoring.

Box for the absolute data backup battery

BGR10THA12RF(KOA)

If the absolute position encoder specification is selected with code ABB, the absolute data backup battery box is included with the controller. However, if the battery box is ordered as Summarv a separate unit, it does not include the battery but just the box itself. If the battery is needed, please purchase it separately. (Model: AB-7)

MSEP-ABB (Batteries not included) Model

Exterior dimensions See P.85

14

* A cable (Model CB-MSEP-AB005) that connects the absolute data backup battery box to the MSEP is included with the box.

a high acceleration/deceleration specification are connected.

Summary The replacement battery for the absolute data backup battery box.

Replacement battery

24VAC servo

motor

BLDC servo

motor

Model **AB-7** Replacement fan unit

Model **MSEP-FU**

MSEP-AD1-I

MSEP-AD2-

MSEP-AD1-A

MSEP-AD2-A

MSEP-DD1-

MSEP-DD2-I

1-axis

2-axis 1-axis

2-axis

1-axis

2-axis

Incremental

Simple absolute

Incremental

Controller <MSEL>__ RCP5series

Introducing MSEL, the Multi-axis Program Controller with a Highoutput Driver (PowerCon) for the RoboCylinder

The Pulse Motor Equipped RoboCylinder Controls a Maximum of 4 Axes

Traditionally, up to two pulse motor actuators could be controlled by a program controller. By using MSEL, a maximum of 4 axes can be controlled. Interpolation function is also available, enhancing its range of use.

Example of Combinations 3-axis Cartesian (Pulse Motor) RCP5 + A Maximum of 4 Axes Can Be Connected

2

The RoboCylinder RCP5 and RCP4 Can Be Connected

PowerCon drivers make it possible to perform interpolation functions using the high-output RCP5 and RCP4 RoboCylinders, which could not be performed with the traditional PSEL program controller.

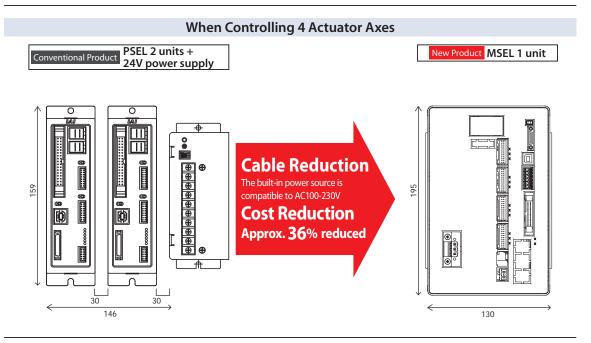
3

Significant Enhancements in Programming Functions

Compared to the conventional product (PSEL), we have enhanced the functionality of the MSEL by having 4 times as many programs and 20 times more positions.

	Conventional product PSEL	New product MSEL
Number of programs	64 <mark>4</mark> t	imes 255
Number of program steps	2000 5 t	imes 9999
Number of multi-tasking programs	8 <mark>2</mark> t	mes 16
Number of positions	1500 20	times 30000 (*1)

(*1) Note that the number of points available for backup in system memory is 10000 points.


Equipped with an Optional Expansion I/O Slot

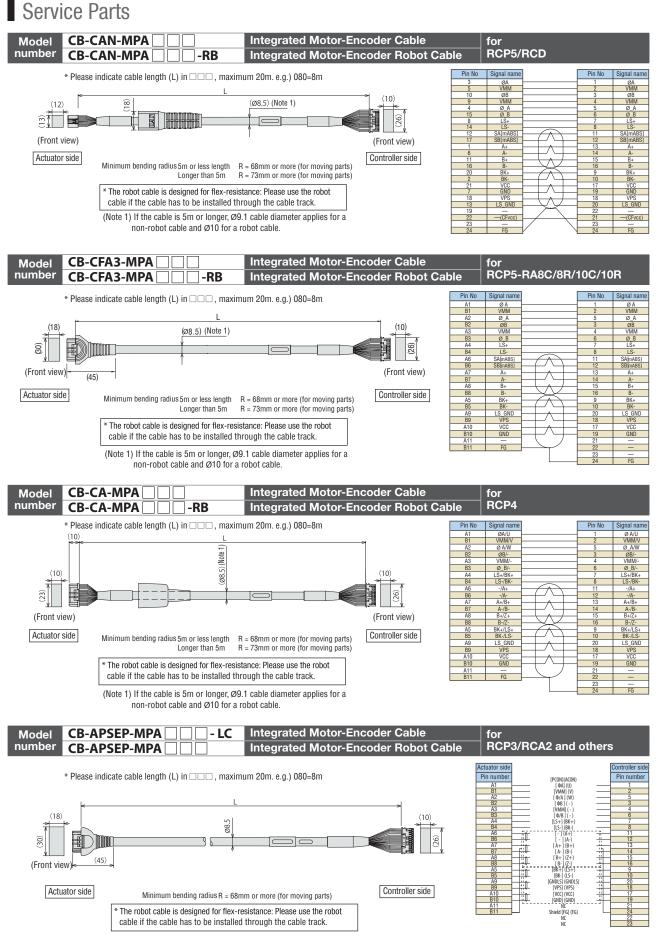
In addition to the standard I/O (IN 16 points/OUT 16 points), an expansion I/O slot can be filled with either a PIO board (IN 16 points/OUT 16 points) or one of four types of field networks.

	Conventional Product PSEL	New Product MSEL
Max. I/O Input and Output Points	24/8 Not applicable for expansion	32/32 When the expandable slot is used
Field Network	3 types (CC-Link, DeviceNet, PROFIBUS-DP)	4 types (CC-Link, DeviceNet, PROFIBUS-DP, EtherNet/IP)
Other External Connections	RS232C: 1ch	RS232C: 1ch

5

Cable and Cost Reduction

6


Global Version according to CE Safety Standard


MSEL-PG is applicable for Safety Categorie s B to 3. (To apply with Safety Category, it is necessary that the user establish a safety circuit out of the controller.)

Compatible with Various Models

The MSEL can be connected to a range of pulse motor type RoboCylinders including RCP5/RCP4/RCP3/RCP2.

RCP5/RCP5CR Series V7 Slider / Rod Type Catalogue No. 1115-E

The information contained in this catalog is subject to change without notice for the purpose of product improvement

IAI Industrieroboter GmbH

Ober der Röth 4 D-65824 Schwalbach / Frankfurt Germany Tel.:+49-6196-8895-0 Fax:+49-6196-8895-24 E-Mail: info@IAI-GmbH.de Internet: http://www.eu.IAI-GmbH.de

IAI America, Inc.

2690 W. 237th Street, Torrance, CA 90505, U.S.A Phone: +1-310-891-6015, Fax: +1-310-891-0815

IAI (Shanghai) Co., Ltd

Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China Phone: +86-21-6448-4753, Fax: +86-21-6448-3992

IAI CORPORATION

577-1 Obane, Shimizu-Ku, Shizuoka, 424-0103 Japan Phone: +81-543-64-5105, Fax: +81-543-64-5192

IAI Robot (Thailand) Co., Ltd 825 PhairojKijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand Phone: +66-2-361-4457, Fax: +66-2-361-4456

IAI, the IAI-logo, RoboCylinderTM, the RoboCylinderTM-logo, IntelligentActuatorTM and the IntelligentActuatorTM-logo are trademarks or product names of IAI Corporation or of the subsidiaries in USA, China, Thailand or Germany